Балки покрытия промышленных зданий. Железобетонные балки

Предисловие ко второму изданию 3
Введение 4
Глава 1. Объемнопланировочные решения И
1.1. Типы зданий. Основные требования к решениям зданий. И
1.2. Сетка колонн, шаг стропильных конструкций 13
1.3. Унификация объемио-планнровочных решений и схем зданий 15
Глава 2. Конструктивные схеыы зданий 20
2.1. Схемы каркасов зданий 20
2.2. Конструктивные схемы покрытий 21
2.3. Жесткость и устойчивость каркаса здания и конструкций
покрытия, решение связей 34
Глава 3. Основные положения по унификации конструкций. . 46
3.1. Модульная система. Номинальные и конструктивные размеры элементов 46
- 3.2. Привязка разбивочных осей и конструкций 49
3.3. Унификация нагрузок 53
3.4. Унификация сопряжений элементов конструкций 56
3.5. Унификация элементов 58
Глава 4. Основные положения проектирования сборных железобетонных конструкций 60
4.1. Нормы проектирования 60
4.2. Арматурные стали 61
4.3. Назначение арматурной стали для конструкций, эксплуатируемых при различных расчетных температурах 66
4.4 Армирование сборных железобетонных конструкций. Унификация арматурных изделий. 69
4.5. Вопросы проектирования предварительно напряженных железобетонных конструкций 74
4.6. Закладные детали: 78
4.7. Требования к конструкциям зданий с агрессивными средами 82
4.8. Требования к конструкциям зданий, сооружаемых в сейсмических районах 85
4.9. Требования к транспортированию н складированию конструкций 86
Глава 5. Фундаменты и фундаментные балки 88
5.1. Нулевой цикл работ 88
5.2. Типы фундаментов и область их применения 90
5.3. Вопросы проектирования сборных фундаментов. . 92
5.4. Фундаментные балки 95
5.5. Обвязочные балки и перемычки 99
Глава 6. Колонны 101
6.1. Типы колонн и область их применения 101
380
6.2. Особенности статического расчета колонн
6.3. Основные вопросы конструктивного решения колонн
64. Типовые колонны прямоугольного сечения для зданий без кранов н с кранами
6 5. Типовые двухветвевые колонны для зданий с мостовыми кранами
6 6. Типовые двухветвевые колонны для зданий с проходами уровне подкрановых балок
Тиг
6 7. Типовые двухветвевые колонны для зданий без кранов и подвесным транспортом
6.8. Типовые колонны торцовых и продольных фахверков
6.9. Типовые колонны для зданий, возводимых в сейсмически:
районах
6.10. Типовые колонны для зданий с увеличенными температурными блоками
611. Типовые колонны для зданий с агрессивной средой
6 12. Работы по дальнейшему совершенствованию колонн
Глава (т^ Стропильные балки
7 1." Область применения балок
7 2.* Основные положения по назначеиню габаритных размеров и статическому расчету балок
7.3.ъ Основные положения расчета балок по прочности, жесткости, образованию и раскрытию трещин
7 4у Выбор очертания и конструирование балок покрытий
7 5. Балки с ненапряглсмой арматурой
7.6. Балки с пучковой и стержневой арматурой, натягиваемо
на бетон
7.7. Балки со стержневой и проволочной арматурой, натягивавмой на упоры (по чертежам первый разработок)
7.8. Балки со стержневой арматурой, натягиваемой электротермическим способом (по чертежам первых разработок)
7.9. Типовые балки со стержневой, проволочной и прядевой арматурой для зданий со скатной кровлей
7.|0. Типовые балки со стержневой, проволочной и прядевой арматурой для зданий с плоской кровлей
7.11. Типовые балки для зданий с сильноагрессивной средой
12. Новые разработки стропильных бялок
Глава Стропильные фермы
8.1. Область применения и типы стропильных ферм. . .
8 2. Особенности сбора нагрузок при расчете ферм....
8 3. Основные положения статического расчета ферм
8 4. Основные положения по расчету элементов ферм на прочность
8 5. Вопросы расчета ферм по образованию или раскрытию трещин н по деформациям
8.6. Основные условия назначения габаритных размеров ферм
размеров сечений и их элементов
8 7. Конструирование ферм и их элементов
88. Особенности конструирования стыков ферм
89. Фермы с пучковой и стержневой арматурой, натягиваемой
на бетон
8.10. Фецыы с проволочной и стержневой арматурой, натягиваемой на упоры
8.11 Фермы из линейных элементов
8.12. Фермы со стержневой арматурой, натягиваемой электротермическим способом 226-
8.13. Типовые фермы с параллельными поясами для покрытий
зданий с плоской кровлей 228
8.14. Типовые сегментные фермы для покрытий зданий со скатной кровлей 232
8.15. Безраскосные предварительно напряженные фермы и арки 237
8.16. Применение типовых ферм в сейсмических районах. 245
Г л а в а (§1 Подстропильные конструкции 246
9.1. Область применения и типы подстропильных конструкций 246
9.2. Основные положения по статическому расчету подстропильных конструкций. ". 248
9.3. Назначение габаритных размеров подстропильных конструкций и их сечений 252
9.4. Особенности конструирования подстропильных балок и ферм 253
9.5. Подстропильные конструкции с пучковой арматурой. . 260
9.6. Первые подстропильные конструкции с натяжением арматуры на упоры 262
9.7. Типовые подстропильные балки с арматурой, натягиваемой
на упоры 265
9.8 Типовые подстропильные фермы для зданий со скатной
кровлей 267
9.9. Типовые подстропильные фермы для зданий с плоской
кровлей 271
9.10. Подбор типовых подстропильных конструкций при проектировании зданий 273
9.11. Экспериментальные разработки подстропильных ферм. . 274
Глава (а Подкрановые балки 276
10.1. Область применения 276
10.2. Вопросы проектирования подкрановых балок 277
10.3. Опыт применения подкрановых балок первых разработок 279 ■
104. Типовые подкрановые балки 280 4
10.5. Варианты подкрановых балок на основе типовых решений 283 1
10.6. Крепление подкрановых балок и крановых рельсов. . . 284
Г л а в а "Плиты покрытий 287
11.1. Типы плит покрытий... 287
11.2. Сведения по расчету и конструированию плит 288
11.3. Типовые железобетонные плиты длиной 6 м 290 ^
11.4. Типовые однослойные плиты длиной 6 м из ячеистых
бетонов 296
11.5. Типовые ребристые плиты длиной 6 х с полкой из ячеистых бетонов 297
11.6. Типовые плиты длиной 6 м из легких бетонов 298
11.7. Типовые железобетонные плиты длиной 12 м 300
11.8. Типовые плиты с отверстиями для легкосбрасываемых кровель и других особых случаев применения 307
11.9. Комплексные плиты 308
11.10. Экспериментальные конструкции плит покрытий.... 31?
Глава 12. Стеновые панели 315
12.1. Применение панелей в строительстве одноэтажных производственных зданий 315
12.2. Типы панелей и область их применения 317
12.3. Конструктивные решения панельных стен 318
12.4. Панели длиной 6 л для неотапливаемых зданий.... 321
12.5. Однослойные панели длиной 6 м из ячеистых бетонов для
отапливаемых зданий 324
12.6. Однослойные панели длиной 6 м из легких бетонов для
отапливаемых зданий 326
12.7. Трехслойные панели длиной 6 м для отапливаемых зданий 327
12.8. Панели длиной 12 м для неотапливаемых зданий. . . 329
12.9. Панели длиной 12 м для отапливаемых зданий.... 330
12.10. Панельные стены зданий, рассчитанные на эксплуатацию
в особых условиях 333
12.11. Панели для простенков, фронтонов, карнизов, парапетов
и перегородок зданий 336
12.12. Панели с отделкой лицевой поверхности 337
Глава 13. Контроль прочности, жесткости, трещиностойкости конст¬
рукций и качества изготовления 339
13.1. Система контроля качества изготовления сборных железобетонных конструкций 339
13.2. Основные положения по контролю.прочности, жесткости и
трещиностойкости конструкций 341
13.3. Контрольные нагрузки и оценка результатов испытания 344
13.4. Способы испытания конструкций на предприятиях. . . 346
13.5. Оформление результатов испытания конструкций.... 353
12..6. Приемка элементов сборных конструкций на монтаж. . 355
Глава 14 Вопросы экономики применения сборных железобетонных
конструкций 356
14.1. Оптовые цены на сборные железобетонные изделия. . . 356
14.2. Вопросы снижения себестоимости сборного железобетона 360
14 3. Районные единичные расценки на строительные работы по
монтажу сборных железобетонных конструкций в зданиях 362
14.4. Показатели для сравнения сметной стоимости и трудоемкости конструкций в деле 365
14 5. Понятие о влиянии технико-экономических показателей
несущих и ограждающих конструкций на сметную стоимость производственных зданий 367
Указатель серий типовых рабочих чертежей 372

Каркасом одноэтажных промышленных зданий называют систему связанных между собой колонн (стоек), несущих элементов покрытия, подкрановых балок и связей. В каркас включаются также фундаментные и обвязочные балки, устанавливаемые в плоскости каркасных стен.

Каркасы, многоэтажных зданий образуют так называемую прост­ранственную этажерку, состоящую из системы соединенных между собой ригелей, колонн и плит перекрытий (горизонтальных диафрагм жесткости).

Материалом для устройства каркаса служат преимущественно железобетон, реже – сталь, различные сплавы и дерево. При выборе материала каркаса руководствуются характером силовых и несиловых воздействий, воспринимаемых каркасом, а также учитывают размеры пролетов, шага колонн, высоту здания, место строительства, требования огнестойкости и технико-экономические соображения.

3.3.1. Железобетонный каркас одноэтажных зданий

В современном индустриальном строительстве применяют в основном сборные железобетонные каркасы, конструктивные элементы которых типизованы. Железобетонный каркас устраивают из сборных или монолитных элементов; наиболее экономичными и распространенными считаются сборные конструкции каркаса.

Каркас является несущей основой здания и состоит из поперечных и продольных элементов. Поперечные элементы – рамы – воспринимают нагрузки от покрытия, снега, ветра, действующего на наружные стены и фонари, а также от навесных стен. Рамы сборного железобетонного каркаса состоят из колонн и несущих конструкций покрытия – балок или ферм. Эти элементы соединяют в узлах шарнирно при помощи металлических закладных деталей, анкерных болтов и небольшого количества сварных швов. Рамы собирают из типовых элементов заводского изготовления. Продольные конструкции здания обеспечивают устойчивость поперечных рам и воспринимают продольные нагрузки от ветра, действующего на торцевые стены здания и торцы фонарей, а также нагрузки от торможения кранов. К продольным элементам относятся подстропильные конструкции и связевые элементы, располагаемые в уровне опорных частей несущих конструкций покрытий. В зданиях, оборудованных кранами, связевыми элементами в продольном направлении служат подкрановые балки.

3.3.2. Основные элементы каркаса производственных зданий и их назначение

Основные элементы каркаса зданий подразделяются на 3 группы:

1) несущие – воспринимающие основные нагрузки в здании;

2) ограждающие – предназначенные для защиты внутреннего пространства здания от атмосферных воздействий, разделения здания на помещения и сохранения заданного температурно-влажностного режима;

3) выполняющие одновременно несущие и ограждающие функции.

Промышленные здания возводят из следующих архитектурно-кон­структивных элементов (частей): фундаментов, фундаментных балок, стен, вертикальных опор (колонн), несущих элементов покрытий и перекрытий – балок, ферм, ригелей, кровли, парапетов, перегородок, фонарей, лестниц, полов, окон и дверей (рис. 3.3.).

Фундаменты представляют собой подземную конструкцию, вос­принимающую нагрузки от веса здания и оборудования и передающую их основанию.

Перекрытия разделяют внутреннее пространство на этажи, выполняют функции ограждающих и несущих конструкций, а также обеспечивают пространственную жесткость здания.

Вертикальные опоры (колонны) предназначены для поддержания покрытий и перекрытий.


Покрытие здания защищает его от атмосферных воздействий. Верхнюю гидроизоляционную оболочку покрытия называют кровлей.

Перегородки служат для разделения внутреннего пространства в пределах одного этажа на отдельные помещения. Перегородки несут только собственную массу и опираются на перекрытия нижнего этажа.

Лестницы служат для сообщения между этажами.

3.3.3. Колонны, их классификация, виды и основные типоразмеры

Конструкция сборных железобетонных колонн зависит от объемно-планировочного решения промышленного здания и наличия в нем того или иного вида подъемно-транспортного оборудования и его грузоподъемности. В связи с этим сборные железобетонные колонны подразделяют на две группы:

1) предназначенные для бескрановых цехов и цехов, оснащенных подвесным подъемно-транспортным оборудованием;

2) для цехов, оборудованных мостовыми кранами.

По конструктивному решению колонны подразделяют на одноветвевые и двухветвевые, а по местоположению в здании – на колонны крайних рядов, средние и располагаемые у торцевых стен. В тех случаях, когда бескрановое здание должно иметь высоту более 9,6 м, можно использовать колонны для зданий с мостовыми кранами. Для зданий, оборудованных мостовыми кранами грузоподъемностью до 20 т, применяют одноветвевые колонны прямоугольного сечения (рис.3.4.).


Выбор сечения колонны зависит от размеров пролета и их числа, величины шага колонн, наличия и вида подстропильных конструкций, подвесного транспорта и конструктивного решения покрытия.

Высота колонн включает в себя расстояние от уровня чистого пола до низа стропильной конструкции плюс глубину заделки в стакане фундамента.

Высота этажа промышленных зданий принята равной: 3,6; 4,8; 6,0; 7,2; 8,4; 9,6; 10,8 (через 1,2 м), 12,6; 14,4; 16,2; 18,0 (через 1,8 м).

Для зданий без мостовых кранов, имеющих высоту от пола до низа несущих конструкций покрытия до 9,6 м, применяют колонны прямоугольного сечения 400x400, 500x500 и 560x600 мм. Средние колонны имеют в верхней части со стороны боковых граней двусторонние консоли для увеличения площади опирания под несущие конструкции покрытия.

Типовые колонны запроектированы под максимальную расчетную нагрузку от полного веса покрытия со светоаэрационными фонарями, снеговой нагрузки и подвесного транспорта грузоподъемностью до 5 т, а также от покрытия и мостовых кранов грузоподъемностью до 50 т.

Колонны в зданиях с мостовыми кранами должны иметь консоль, стойку или отдельную ветвь для опирания подкрановых балок. Средние колонны имеют две подкрановые консоли, крайние выполняют с односторонним расположением подкрановой консоли. Колонны для зданий с мостовыми кранами состоят из надкрановой части (от верха колонны до подкрановых консолей) и подкрановой части (от подкрановых консолей до фундамента). Надкрановая часть (надколонник) служит для опирания несущей конструкции покрытия, а подкрановая часть передает нагрузку от надколонника и подкрановых балок, опиравшихся на консоли колонн, на фундамент. Колонны крановых зданий бывают сплошные и двухветвевые (сквозные).

Двухветвевые (сквозные) колонны применяют для зданий, обору­дованных мостовыми кранами общего назначения грузоподъемностью от 10 до 50 т, а также для бескрановых зданий с высотой этажа 10,8; 12,6; 14,4; 16,2; 18,0 м при пролетах, равных 18, 24 и 30 м. Шаг колонн для крайних рядов 6 и 12 м, для средних рядов – 12 м. Двухветвевые колонны имеют в надкрановой части сплошное прямоугольное сечение, а в подкрановой части – две ветви также прямоугольного сечения, соединенных по высоте распорками через 1,5 – 2,0 м. Высота типовых двухветвевых колонн составляет 10.8 – 18 м. Сечения крайних и средних колонн при шаге
6 м составляют 400x600 и 400х800 мм, а при шаге 12 м – 500x800 мм. При кранах грузоподъемностью до 30 т и высоте здания более 10,8 м применяют ступенчатые (для крайних рядов) и ступенчато-консольные (для средних рядов) двухветвевые колонны.

Величина заглубления колонн ниже нулевой отметки зависит от вида и высоты колонн, грузоподъемности кранового оборудования и наличия помещений или приямков, располагаемых ниже уровня пола.

Выполняют колонны обычно в виде одного цельного элемента из тяжелого бетона марки 300, армируют сварными каркасами из горячекатаной стали класса АI. Средние колонны, испытывающие действия моментов двух знаков, армируют симметрично.

Просветы между распорками ветвей колонн используют для пропуска санитарно-технических и технологических коммуникаций.

В зданиях с сильноагрессивными средами нежелательно применять двухветвевые колонны, так как они имеют сложную геометрическую форму поперечного сечения, малодоступную для осмотра и окраски мест, где могут скапливаться влага и гигроскопическая пыль. В таких случаях рекомендуется применять сплошные колонны.

3.3.4. Фундаментные и подкрановые балки

Наружные и внутренние самонесущие стены здания устанавливаются на фундаментные балки, посредством которых нагрузка передается на фундаменты колонн каркаса. Фундаментные балки укладывают на специальные бетонные столбики, устанавливаемые на обрезы фундаментов. Балки укладывают под наружные стены вплотную к наружным граням колонн, под внутренние стены – между колоннами.

Фундаментные балки при шаге колонн 6 м применяются сборные железобетонные из бетона марок 300 – 350, при шаге колонн 12 м – с предварительно напряженной арматурой. Сечение фундаментных балок может быть тавровым, трапециевидным или прямоугольным. Основные фундаментные балки изготовляют высотой 450 мм (для шага колонн 6 м) и
600 мм (для шага колонн 12 м), а шириной 260, 300, 400 и 520 мм. Эти размеры соответствуют наиболее распространенной в промышленных зданиях толщине наружных стен. В местах устройства температурных швов укладывают балки, укороченные на 500 мм.

Для защиты пристенной полосы пола от промерзания и предотвращения деформации балок на пучинистых грунтах их снизу и с боков засыпают шлаком. Верхнюю грань фундаментной балки размешают на
30 – 50 мм ниже уровня чистого пола, который в свою очередь располагают на 150 мм выше отметки грунта. Поверх фундаментных балок укладывают гидроизоляцию из цементно-песчаного раствора или двух слоев рулонного материала на битумной мастике. На поверхности земли вдоль фундаментных балок по всему периметру здания устраивают асфальтобетонную отмостку для предотвращения подмокания фундаментов под наружные стены от атмосферных осадков.

Подкрановые балки предназначены для опирания рельсов мостовых кранов и обеспечения продольной пространственной жесткости каркаса здания.

Железобетонные подкрановые балки могут быть таврово-трапециевидного или двутаврового сечения; их применяют под краны легкого и среднего режима работы при шаге колонн 6 и 12 м и грузоподъемности кранов до 30 т. В торцах здания на подкрановых балках устанавливают упоры для мостовых кранов.

3.3.5. Железобетонный каркас многоэтажных промышленных зданий

Элементы каркаса многоэтажных промышленных зданий должны обладать высокой прочностью, устойчивостью, долговечностью и огнестойкостью. Поэтому для этих зданий применяют железобетонные конструкции, которые могут быть монолитными, сборными или сборно-монолитными.

Стальной каркас применяют при больших нагрузках, при наличии динамических воздействий на несущие конструкции от работы оборудования или при строительстве зданий в труднодоступной местности.

Положительным качеством многоэтажных зданий является их компактность, в связи с чем заметно сокращается протяженность различных инженерных и транспортных коммуникаций. В многоэтажных зданиях размещают производства, в которых технологический процесс организуется по вертикали. В этом случае материалы поднимают на верхний этаж, откуда они самотеком перемещаются на нижележащие этажи для переработки. Так, например, на предприятиях пищевой, фармацевтической и химической промышленности многие цехи оборудуют вертикально расположенной аппаратурой большой высоты, и жидкие материалы перерабатываются при транспортировании их самотеком. Здесь также целесообразно применять многоэтажные здания или этажерки.

Этажерки представляют собой многоярусные сооружения без ог­раждающих конструкций и покрытия. На них размещают такое техноло­гическое оборудование, на которое атмосферные влияния не оказывают вредного воздействия.

Преобладающей конструктивной схемой многоэтажных зданий является каркасная с навесными стенами. Здания с несущими стенами и внутренним каркасом применяются в последние годы сравнительно редко.

Многоэтажные каркасные здания сооружают по рамной схеме с жесткими узлами. Каркас состоит из вертикальных стоек (колонн), соединенных жестко с балками (ригелями) междуэтажных перекрытий и покрытий. В совокупности они образуют поперечную многоярусную раму, жестко защемленную в фундаментах. В продольном направлении поперечные рамы связывают настилом перекрытий и покрытий, образующих жесткие диафрагмы. Продольная жесткость обеспечивается также дополнительными стальными связями, которые размешают посредине каждого температурного блока.

Высота этажей может быть 3,6; 4,8; 6,0; 7,2 и 10,8 м. Высоту,7,2 м применяют для первого и верхнего этажей, высоту 10,8 м – только для верхнего. Высота этажа считается между отметками чистого пола; высоту верхнего этажа при укрупненном пролете замеряют от уровня чистого пола этого этажа до низа строительной конструкции.

Для сооружения многоэтажных зданий применяют типовые сборные железобетонные колонны двух типов – крайние и средние. Для опирания ригелей у колонн предусмотрены консоли. По высоте колонны могут быть двухэтажной разрезки высотой на два этажа и поэтажной – высотой на один этаж (рис. 3.5.).

Для двух нижних этажей, как правило, применяют колонны только двухэтажной разрезки. Для третьего и четвертого этажей – высотой 3,6 м и 4,8 м – устанавливают колонны тоже двухэтажной разрезки. Колонны поэтажной разрезки используют при высоте третьего этажа и выше, равной 6 м.

На консоли многоэтажных зданий опираются ригели (балки) междуэтажных перекрытий и покрытия. Размер между консолями принимают равным высоте этажа. Расстояние от консоли до верхнего конца колонны равно 1780 мм у колонн средних этажей и 720 мм у колонн верхнего этажа. Таким образом, стыковку колонн производят на высоте 1,0 или 0,6 м от плоскости плит перекрытия, в зависимости от типа железобетонного ригеля. Это обеспечивает удобство производства работ при монтаже. Такое расположение стыка объясняется также наименьшими усилиями, возникающими в месте стыка, в стойке каркаса при эксплуатации здания.



Сечение колонн – прямоугольное 600x400 или 400x400 мм, причем у колонн нижних этажей сечение составляет 600x400 мм. Переход на сечение 400x400 мм обычно происходит на уровне верхней плоскости консоли второго этажа.

Ригели (балки междуэтажных перекрытий) изготавливают двух типов:

а) тип I – для опирания плит на полки;

б) тип II – для опирания плит на верхнюю плоскость ригеля.

Ригели типа II отличаются от ригелей типа I формой поперечного сечения. Они имеют прямоугольную форму высотой 800 и шириной 300 мм. Длина ригелей зависит от их расположения в здании (крайние, средние), а также от расположения по этажам, что связано с сечением колонн, и составляет 5000; 5300; 5500 для 6-метрового пролета и 8000; 8300; 8500 мм для 9-метрового пролета.

Для крепления ригелей по концам их в верхней части имеются выемки с выпусками стержней арматуры, которые сваривают с арматурой колонн, после чего стык замоноличивают бетоном М 100-150 на мелком щебне. Ригели для пролетов 6 м изготавливают из бетона М 200 без предварительного напряжения арматуры. Ригели для 9-метровых пролетов изготавливают с предварительным напряжением нижних стержней арматуры. Междуэтажные перекрытия в многоэтажных промышленных зданиях, как правило, делают сборными. Они состоят из ригелей и железобетонных ребристых плит.

Плиты подразделяют на две группы в зависимости от типа ригеля. Для опирания плит на полки ригелей типа I предусмотрено два типоразмера плит:

а) основные плиты, имеющие ребристую коробчатую конструкцию длиной 5500 и 5050 мм и шириной 1500 мм, а также укороченные плиты длиной 5050 мм, которые укладывают в торцах здания и в местах устройства деформационных швов;

б) доборные плиты, укладываемые у продольных стен и имеющие такую же длину, что и основные, шириной 740 мм и высотой 400 мм.

При использовании ригелей II. типа плиты укладывают по их верху. Плиты II типа имеют один типоразмер: 5950x1490 мм; в качестве доборной применяют плиту I типа. Эти плиты имеют также коробчатую конструкцию. Межколонные плиты, имеющие в торцах вырезы для колонны, служат распорками, передающими горизонтальные продольные нагрузки на каркас здания их укладывают поверх ригелей.

В случае устройства каркаса многоэтажного здания (или этажерки), для легкого оборудования или вспомогательных помещений строят здания с безбалочными (сборными железобетонными) перекрытиями, имеющими ряд преимуществ, таких как возможность создания гладких потолков, не имеющих ребер, что способствует лучшему проветриванию и препятствует застою воздуха, это особенно важно для помещений с взрывоопасными выделениями и необходимостью обеспечения высокой степени гигиеничности. Кроме того, помещения с гладкими потолками лучше освещаются.

В таких перекрытиях на колонны с консолями надевают квадратные в плане капители, служащие опорами надколонным панелям. Эти панели образуют замкнутый контур, на который и опираются пролетные панели, имеющие квадратную форму.

3.3.6. Условия применения стальных конструкций для каркасов одноэтажных промышленных зданий

Применение стальных конструкций для каркасов промышленных зданий в соответствии с "Техническими правилами по экономному расходованию основных строительных материалов" (ТП 101-81) допускается только в приведенных ниже случаях.

а) Для стропильных и подстропильных конструкций:

· в отапливаемых зданиях с пролетами 30 м и более;

· в неотапливаемых зданиях и навесах различного назначения с асбестоцементной кровлей с пролетами до 12 м включительно при грузоподъемности подвесного подъемно-транспортного оборудования более 2 т, с пролетом 18 м при грузоподъемности подвесного подъемно-транспортного оборудования более 3,2 т;

· в зданиях и навесах пролетом 24 м и более;

· в неотапливаемых однопролетных зданиях с рулонной кровлей с пролетами 30 м и более;

· в многопролетных зданиях с пролетами 18 м и более;

· в зданиях с подвесным подъемно-транспортным оборудованием грузоподъемностью более 5 т либо другими подвесными устройствами, создающими нагрузки, превышающие предусмотренные для типовых железобетонных конструкций;

· в зданиях на участках с развитой сетью подвесного конвейерного транспорта;

· в зданиях с расчетной сейсмичностью 8 баллов с пролетами 24 м и более;

· в зданиях с расчетной сейсмичностью 9 баллов с пролетами 18 м и более, а также в случаях:

· возведения зданий в труднодоступных районах строительства;

· в зданиях с большими динамическими нагрузками (копровые цехи, взрывные отделения и др.);

· над горячими участками цехов с интенсивным теплоизлучением при температуре нагрева поверхности конструкций более 100 °С (холодильники прокатных цехов, отделения нагревательных колодцев, печные и разливочные пролеты и т.п.).

б) Колонны:

· в зданиях при высоте их от пола до низа стропильных конструкций более 18 м;

· при наличии мостовых кранов общего назначения грузоподъемностью 50 т и более независимо от высоты колонн, а также при меньшей грузоподъемности кранов тяжелого режима работы;

· при шаге колонн более 12 м;

· при двухъярусном расположении мостовых кранов.

в) Для подкрановых балок, светоаэрационных фонарей, ригелей и стоек фахверка.

г) Для типовых легких несущих и ограждающих конструкций комплексной поставки.

Применение стальных конструкций для каркасов одноэтажных производственных зданий при использовании новых эффективных утеплителей по сравнению с аналогичными традиционными конструкциями из железобетона и обычных теплоизоляционных материалов позволяет значительно снизить массу (вес) здания в целом.

Стальной каркас промышленного здания имеет конструктивную схему, аналогичную железобетонному каркасу.

Стальные колонны и их виды

Стальные колонны в зависимости от их поперечного сечения подразделяют на следующие:

а) сплошные:

– постоянного;

– переменного сечения;

б) решетчатые (сквозные) переменного сечения;

в) раздельные переменного сечения.

Колонны устраивают для бескрановых зданий и для зданий, обо­рудованных кранами. Колонны воспринимают совместно нагрузки от покрытия и кранов; при большой грузоподъемности кранов колонны раздельно воспринимают нагрузки от покрытия и от кранов. Соединения элементов колонн выполняют сварными, а при особо тяжелых крановых нагрузках – клепаными.


В поперечном сечении стальные колонны чаще всего представляют собой комбинацию нескольких прокатных профилей (швеллеров, двутавров, уголков, стальных листов), связанных накладками. Подкрановые балки опирают на колонны постоянного сечения через специально устраиваемые для этой цели консоли, а в ступенчатых – на уступы колонн (рис.3.6.).

Сплошные колонны по сравнению со сквозными менее трудоемки в изготовлении, но требуют большего расхода стали. Их применяют в бескрановых зданиях, а также в цехах с мостовыми кранами грузоподъемностью до 20 т. В остальных случаях применяют колонны переменного сечения, при этом надколонники могут быть сплошными или сквозными. Нижнюю подкрановую часть колонн при ширине ее до 800 мм делают сплошной, а в остальных случаях сквозной. Колонны раздельного типа в некоторых случаях бывают самыми экономичными, так как разделение передаваемых нагрузок от покрытия и кранов на две ветви дает наиболее полное использование материала. Сплошные колонны чаше всего выполняют из одного прокатного профиля или нескольких вертикальных листов, сваренных между собой по всей высоте колонны. Сквозные колонны состоят из нескольких отдельных ветвей, которые соединяют между собой решетками.

Нагрузку от колонн на фундаменты передают через башмаки, размеры которых определяют по расчету в зависимости от величины передаваемых нагрузок; башмаки располагают на 500 – 800 мм ниже уровня пола. Во избежание коррозии башмаки обетонивают.

Фундаментные балки при стальных каркасах выполняют железобетонными.

Стальные подкрановые балки

Стальные подкрановые балки могут быть разрезными и неразрезными, сплошными и решетчатыми . Наибольшее распространение получили разрезные подкрановые балки – из-за простоты конструктивного решения и индустриальности, хотя неразрезные подкрановые балки имеют лучшие условия эксплуатации подкрановых путей.

Решетчатые подкрановые балки следует применять при пролетах 12 м и более при использовании кранового оборудования легкого и среднего режимов работы с грузоподъемностью, не превышающей 50 т. Во всех остальных случаях применяют сплошные подкрановые балки.

Для восприятий горизонтальных сил от торможения тележки и перекосов крана, а также обеспечения общей устойчивости подкрановых балок необходимо предусматривать установку тормозных балок или ферм, которые крепятся сваркой к верхним поясам подкрановых балок. Ширина тормозных балок и ферм назначается с учетом необходимой жесткости и возможности прохода по подкрановым путям. При высоте подкрановых балок более 1200 мм необходимо дополнительно вводить диафрагмы.

Стальные несущие конструкции покрытий: балки, фермы, рамы и арки

В качестве стальных несущих конструкций покрытия применяют прокатные или составные балки, фермы, арки, пространственные и висячие системы.

Стальные прокатные и составные балки имеют чаше всего двутавровое сечение, их используют при пролетах 6 – 12 м.

Стальные фермы, применяемые в практике строительства, имеют различные типы, форму и очертания, выбор которых зависит от назначения и объемно-планировочного решения промышленного здания. Геометрические схемы типовых унифицированных стальных ферм приведены на рис.3.7.

Наиболее часто применяют фермы сегментные, параболические, с параллельными поясами, полигональные, треугольные, с параллельными поясами с затяжкой и др. Фермы с параллельными поясами предназначены для зданий с плоским покрытием, а также для устройства подстропильных конструкций; их пролет может достигать 60 м и более. Полигональные фермы используют для устройства покрытий с рулонной кровлей при пролетах до 36 м. Треугольные фермы дают возможность осуществить покрытия с крутыми кровлями из асбестоцементных или стальных листов, вследствие чего высота ферм в середине пролета достигает значительных размеров; это ограничивает перекрываемые ими пролеты до 36 – 48 м. В массовом промышленном строительстве применяют унифицированные полигональные фермы пролетом 24, 30 и 36 м с уклоном верхнего пояса 1:8 и высотой в опорном узле 2200 мм, плоские с параллельными поясами пролетом 24, 30 и 36 м и высотой в опорном узле 2550, 3750 и 3750 мм соответственно и уклоном верхнего пояса 1,5 %, по которым устраивают рулонные кровли. В отдельных случаях фермы такого типа применяют для перекрытия 18-метровых пролетов. Фермы с крутыми скатами используют для пролетов 18, 24, 30 и 36 м при кровлях из листовых материалов; их высота

на опорах принята 0,45 м, а в средней части 3000, 3860, 4730 и 5560 мм соответственно. Большепролетные фермы могут перекрывать пролеты до 90 м и иметь различные схемы решеток: треугольную, раскосную, крестовую и другие, выбор которых зависит от характера приложения нагрузки и высоты фермы.

В подавляющем большинстве случаев фермы имеют неподвижные опоры, однако в температурном шве на одной колонне (а не на спаренных колоннах) одну из колонн устанавливают на катках или сферических поверхностях.

Стальные рамы, предназначенные для устройства несущих конструкций покрытий при больших пролетах, выполняют одно- или многопролетными, с горизонтальными или ломаными поясами. Рамные конструкции эффективны при жесткости колонн, близкой к жесткости ригелей, высоту которых принимают: при сплошных сечениях 1/20 – 1/30 пролета, при решетчатых – 1/12 – 1/18 пролета.

Стальные арки применяют в промышленных зданиях для устройства покрытий со значительными – от 50 до 200 м – размерами пролетов. Распор арок передают через фундаменты на грунт; стрела подъема арок находится в пределах 1/2 – 1/15 пролета. Арки, как и рамы, могут иметь сплошное или сквозное сечение; высота сечения сквозных арок составляет 1/30 – 1/60 пролета и 1/50 – 1/80 сплошных арок.

Связи

Пространственную жесткость и устойчивость ферм, арок, рам и других плоскостных конструкций каркасов зданий обеспечивают системой связей, устанавливаемых между этими конструкциями.

В покрытиях устраивают горизонтальные (продольные и поперечные) и вертикальные связи, а между колоннами – продольные вертикальные связи.

Продольные горизонтальные связи располагают вдоль рядов колонн в плоскостях нижнего и верхнего поясов крайних панелей ферм. Они представляют собой продольные связевые фермы с параллельными поясами. Поперечные горизонтальные связи образуют поясами двух смежных стропильных ферм и расположенной между ними решеткой. Их устраивают у торцов здания, а также с обеих сторон каждого деформационного шва, а при большом расстоянии между деформационными швами – через каждые 60 м.

3.3.7. Железобетонные несущие конструкции покрытия, их виды и типы

Несущие конструкции покрытий промышленных зданий подразделяют на стропильные, подстропильные и несущие элементы ограждающей части покрытия. В промышленных зданиях применяют два типа стропильных несущих конструкций:

1) плоскостные – балки, фермы, арки и рамы;

2) пространственные – оболочки, складки, купола, своды и висячие системы.

В качестве подстропильных конструкций промышленных зданий широко используют балки и фермы, а в качестве несущих конструкций ограждающей части покрытия – крупноразмерные плиты. Соответственно унифицированным размерам объемно-планировочных элементов промышленных зданий величину поперечных пролетов и продольного шага несущих конструкций назначают кратной укрупненному модулю 6 м; в отдельных случаях допускается применение модуля 3 м.

Железобетонные балки применяют для устройства покрытий в промышленных зданиях, пролетами 6, 9, 12, 18 и в отдельных случаях 24 м. Необходимость балочных покрытий при пролетах 6, 9 и 12 м (пролеты таких размеров можно перекрыть и плитами) возникает в случае подвески к несущим конструкциям подъемно-транспортного оборудования. Железобетонные балки могут быть односкатными, двухскатными и с параллельными поясами (рис.3.8.).

Односкатные балки применяют в зданиях с шагом колонн 6 м и в зданиях с наружным водоотводом пролетами 6 и 9 м. Сечение балок тавровое, в опорных узлах имеются вертикальные ребра жесткости. Уклон верх-


него пояса односкатных балок пролетом 6 м составляет 1:10, пролетом 9 м – 1:15, пролетом 12 м – 1:20. Высота балок в опорном узле – 600 (для пролета 6 м) и 800 мм (для пролета 9 м). Для устройства скатных покрытий зданий пролетом 12 м применяют предварительно напряженные односкатные балки с высотой в опорном узле 1200 мм. Такие балки рассчитаны на подвесной транспорт в виде двух кран-балок грузоподъемностью по 1,5 т каждая и нагрузку от покрытия в пределах 350 ÷ 550 кг/м 2 ; сечение балок двутавровое.

Двускатные балки используют для устройства ломаных покрытий в зданиях пролетами 6, 9, 12 и 18 м. Балки пролетом 6 и 9 м имеют тавровое сечение и вертикальные ребра жесткости в опорных узлах. Высота в опорном узле 6-метровых балок составляет 400 мм, 9-метровых – 600 мм. Балки пролетом 6, 9, 12 м устанавливают только с шагом 6 м, а балки пролетом 18 м – с шагом 6 и 12 м. Сечение балок – двутавровое. Высота в средней части 12-метровой балки равна 1290 мм, 18-метровой – 1540 мм, высота в опорных узлах – 800 мм. Уклон верхнего пояса двухскатных балок 1:20.

Балки с параллельными поясами применяют для зданий с плоскими покрытиями и пролетами 12, 18 и 24 м. Сечение балок двутавровое, высота 1200 мм. В целях уменьшения массы балок в их вертикальной стенке устраивают сквозные отверстия для прокладки различных внутрицеховых коммуникаций, что позволяет более рационально использовать внутреннее пространство помещений.

Подстропильные балки предназначены в качестве опор для стропильных балок при шаге колонн 12м в зданиях с плоскими или скатными покрытиями. Длина балок соответствует пролету 12 м, высота их составляет 500 мм, сечение тавровое с полкой внизу.

Фермы, их виды

Железобетонные фермы применяют при пролетах 18, 24 и 30 м и шаге 6 и 12 м. При пролетах 36 м и больше используют, как правило, стальные фермы. Применение 18-метровых ферм целесообразно в том случае, когда в пределах покрытия необходимо разместить коммуникационные трубопроводы или использовать межферменное пространство для устройства технических этажей.

Различают следующие основные типы ферм:

а) сегментные, с верхним поясом ломаного очертания и прямолинейными участками между узлами;

б) арочные раскосные с редкой решеткой и верхним поясом плавного криволинейного очертания;

в) арочные безраскосные;

г) полигональные с параллельными поясами или трапециевидным очертанием верхнего пояса;

д) полигональные с ломаным нижним поясом.

Высоту ферм всех типов в середине пролета принимают равной
1/7 – 1/9 длины пролета. Выполняют фермы из бетонов высоких классов (В30 – В50) и армируют нижний пояс и растянутые раскосы предварительно напряженной арматурой класса AIV с натяжением на упоры. Ширину сечения поясов ферм при их шаге 6 м принимают 200 – 250 мм, а при шаге 12 м – 300 – 350 мм (рис.3.9.).

В современной практике промышленного строительства наибольшее распространение получили сегментные стропильные фермы. Их применяют для устройства скатных покрытий с фонарями или без них. Эти фермы применяют для перекрытия пролетов 18, 24 и 30 м. Сечения верхнего и нижнего поясов – прямоугольные одинаковой ширины. Фермы устанавливают на железобетонные колонны при шаге колонн 6 м или на подстропильные фермы при шаге колонн 12 м.

Фермы с параллельными поясами используют для устройства плоских покрытий зданий без фонарей. Длина ферм рассчитана на пролеты 18 и 24 м. Фермы, устанавливаемые через 6 м, рассчитаны на подвесной транспорт грузоподъемностью до 5 т.


Подстропильные конструкции

Подстропильные конструкции в виде железобетонных ферм и балок применяют в покрытиях одноэтажных промышленных зданий при шаге колонн 12 и 18 м и с пролетами, равными 18, 24 и 30 м для опирания на них стропильных конструкций, устанавливаемых с шагом 6 м, в случаях, когда технологический процесс требует широкого шага опор.

Подстропильные конструкции выполняют предварительно напряженными из бетона классов В30-В40 и армируют канатами класса К-7,
К-10, стержневой класса А1У или проволочной арматурой Вр-11 с натяжением на упоры.

Железобетонные подстропильные конструкции устраивают в виде балок высотой 1500 мм и ферм высотой 2200 и 3300 мм.

3.3.8. Несущие элементы ограждающей части покрытия

При плоских и скатных несущих конструкциях несущие элементы ограждающей части покрытий выполняются прогонными – с применением прогонов, по которым укладывают мелкоразмерные плиты, или беспрогонными – в виде крупноразмерных плит.

Настил беспрогонных покрытий промышленных зданий обычно устраивают из предварительно напряженных ребристых железобетонных плит размерами 3x12, 1,5x12, 3х6 и 1,5x6 м, а также из легкого армированного бетона размером 1,5x6 м. Плиты укладывают по верхнему поясу стропильных конструкций (балок или ферм) и приваривают к нему. Стыки между плитами замоноличивают цементным раствором или бетоном, и настил работает как единая жесткая диафрагма на восприятие горизонтальных и вертикальных нагрузок.

Основными плитами считаются плиты шириной 3 м, доборными – шириной 1,5 м, которые применяются в местах с большой нагрузкой на покрытие.

Наибольшее распространение получили ребристые плиты, выполняемые из тяжелого железобетона.

Плиты покрытий из легких и ячеистых бетонов, совмещающие функции настила и утеплителя, применяют для устройства теплых покрытий в зданиях с шагом несущих конструкций 6 м. Плиты изготавливают из керамзитобетона, из автоклавного армированного ячеистого бетона (пенобетона или пеносиликата с объемной массой от 700 до 1000 кг/м 2).

Основные плиты из легких бетонов имеют длину 6 м и ширину
1,5 м, доборные плиты – ширину 0,5 м при толщине 200, 240 мм. Опирание всех типов крупноразмерных плит на несущие конструкции осуществляют через стальные закладные детали, приваривая их к закладным деталям верхнего пояса несущих конструкций покрытия.

3.3.9. Легкосбрасываемые покрытия

Легкосбрасываемые покрытия устраивают на зданиях категорий А и Б (по пожарной опасности). Такие покрытия легко сбрасываются под действием повышенного давления в результате возможного взрыва газов или пыли; стены зданий и основные несущие конструкции в этом случае не разрушаются. Суммарная площадь легкосбрасываемых участков покрытия стен, а также окон и дверей должна быть не менее 0,05 м 2 на 1 м 3 взрывоопасного помещения.

Настил легкосбрасываемого покрытия делают из железобетонных специальных плит и асбоцементных волнистых листов.

Железобетонные плиты имеют длину 6 м, ширину 3 или 1,5, высоту 300 мм. Плиты имеют коробчатую форму с поперечными ребрами жесткости и отверстиями. Плиты шириной 3 м укладывают как обычные и прикрепляют к несущим конструкциям покрытия, а плиты шириной 1,5 м размешают с интервалами.

На железобетонные плиты настилают волнистые асбоцементные листы усиленного профиля. Плитный утеплитель укладывают по асбестоцементным листам, впадины заполняют насыпным утеплителем. По верху утеплителя делают выравнивающий слой, по которому расстилают рулонную кровлю.

Пространственную систему, состоящую из колонн, подкрановых балок и несущих конструкций покрытия, называют каркасом одноэтажного промышленного здания.

Вертикальные несущие элементы железобетонного каркаса называют колоннами. По расположению в здании колонны подразделяют на крайние и средние.

Колонны постоянного сечения (бесконсольные) (рис. 7) применяют в зданиях без мостовых кранов и в зданиях с подвесными кранами.

Колонны крайних рядов - прямоугольного постоянного по высоте сечения. Средние колонны, имеющие в плоскости поперечной рамы размер сечения менее 600 мм, снабжены вверху двусторонними консолями с таким выступом, чтобы длина площадки для опирания конструкции покрытия была равна 600 мм. При размере сечения 600 мм и более колонны не имеют консолей.

В колоннах, примыкающих к торцовым стенам, должны быть предусмотрены со стороны стен закладные детали для крепления приколонных стоек фахверка, у которых нулевая привязка к продольным осям.

Рис. 7. Сборные железобетонные колонны для бескрановых пролетов одноэтажных зданий:

а - крайние колонны; б, в - средние колонны;

1 - закладные стальные детали для крепления ферм или балок покрытия;

2 - то же для приварки анкеров, скрепляющих стену с колоннами;

3 - риски; 4 - анкерный болт

Колонны изготовляются из бетона класса В15-В30. Основная рабочая арматура - стержневая из горячекатаной стали периодического профиля класса A-III.

Колонны прямоугольного сечения для здания с мостовыми кранами, имеющие консоли (рис. 8, а, б), применяют в зданиях пролетом 18 и 24 м, высотой до 10,8 м, оборудованных мостовыми кранами грузоподъемностью 10-20 т. Крайние колонны одноконсольные, средние - двухконсольные. Колонны имеют прямоугольное поперечное сечение как в верхней (надкрановой), так и в нижней (подкрановой) части.

Рис. 8. Сборные железобетонные колонны для крановых пролетов:

а, б - одноветвевые (крайние и средние); в, г - двухветвевые;

1 - закладные детали для крепления балок или ферм покрытия; 2 - то же

для приварки анкеров, скрепляющих стену с колоннами; 3 - риски;

4 - анкерные болты; 5 - закладные детали для крепления подкрановых балок

Колонны внутренних и наружных рядов, устанавливаемые в местах расположения вертикальных связей, должны иметь закладные детали для крепления связей.

Колонны изготовляются из бетона класса В15, В25. Основная рабочая арматура - стержневая из горячекатаной стали периодического профиля класса A-III.

Двухветвевые колонны (рис. 8, в, г) применяются в зданиях пролетом 18, 24, 30 м, высотой от 10,8 до 18 м, оборудованных мостовыми кранами грузоподъемностью до 50 т.

Для крайних колонн при шаге 6 м, высоте не более 14,4 м и грузоподъемности крана меньше или равной 30 т принята нулевая привязка, а в остальных случаях - 250 мм.

Колонны запроектированы в нижней части с двумя ветвями и соединительными распорками. Ветви, распорки и верхняя часть всех колонн имеют сплошное прямоугольное сечение.

Колонны изготовляются из бетона класса В15, В25. Основная рабочая арматура - стержневая из горячекатаной стали периодического профиля класса А-Ш.

Нижние части железобетонных колонн, заводимые в стакан, в номинальную высоту колонны не включаются. Колонны предназначены для использования в условиях, когда верх фундаментов имеет отметку -0,150. Длину колонн подбирают в зависимости от высоты цеха и глубины заделки в стакан фундамента.

В зданиях с подстропильными конструкциями длина средних колонн уменьшается на 700 мм.

Подкрановые и обвязочные балки

Железобетонные подкрановые балки (рис. 9) применяют в зданиях при шаге колонн 6 и 12 м, при грузоподъемности кранов до 30 т. Балки имеют тавровое и двутавровое сечение с утолщением стенок на опорах. Унифицированные размеры балок принимают в зависимости от шага колонн и грузоподъемности кранов: при шаге колонн 6 м балки имеют длину 5950 мм, высоту сечения 800, 1000, 1200 мм; при шаге колонн 12 м длина балок 11 950 мм, высота 1400, 1600, 2000 мм. Изготовляют из бетона класса В25, В30, В40 с предварительно напряженной арматурой.

По местоположению в здании различают подкрановые балки рядовые и торцовые. Они отличаются местоположением закладных пластин.

В балках предусматриваются закладные элементы для крепления к колоннам (стальные листы) и для крепления к ним крановых рельсов (трубки диаметром 20-25 мм через 750 мм подлине полки).

Крепят подкрановые балки к колоннам сваркой закладных элементов и анкерных болтов. Болтовые соединения после окончательной выверки заваривают. Рельсы к подкрановым балкам крепят стальными парными лапками, расположенными через 750 мм. Под рельсы и лапки укладывают упругие прокладки из прорезиненной ткани толщиной 8-10 мм.

Во избежание ударов мостовых кранов о торцовые стены здания на концах подкрановых путей устраивают стальные упоры, снабженные деревянным брусом.

Обвязочные железобетонные балки (рис. 10) предназначены для опирания кирпичных и мелкоблочных стен в местах перепада высот пролетов, а также для повышения прочности и устойчивости высоких самонесущих стен. Обычно балки устраивают над оконными проемами. Железобетонные обвязочные балки имеют длину 5950 мм, высоту сечения 585 мм, ширину 200, 250, 380 мм. Их устанавливают на стальные опорные столики и крепят к колоннам с помощью стальных планок, привариваемых к закладным элементам.

Рис. 9. Сборные железобетонные подкрановые балки:

а - пролетом 6 м; б - пролетом 12 м; в - опирание подкрановой балки

на колонну (общий вид); г - то же, с фасада и в сечении;

1 - закладные детали колонны; 2 - то же подкрановой балки; 3 - стальная планка; 4 - стальная накладка; 5 - заделка бетоном; 6 - отверстия для крепления рельса

Стены над обвязочными балками можно предусматривать сплошными, с отдельными проемами, с ленточным остеклением.

Балки изготовляются из бетона класса В15.

Рис. 10. Обвязочные балки, их опирание на колонны:

а - балка прямоугольного сечения; б - балка прямоугольного

сечения с полочкой; в - опирание балок (вид снизу) на стальную консоль;

1 - закладные детали; 2 - сварная металлическая консоль; 3 - монтажная накладка

Стропильные и подстропильные балки и фермы

В покрытиях зданий несущими элементами служат балки и фермы, укладываемые поперек или вдоль здания.

По характеру укладки балки и фермы бывают: стропильные, если они перекрывают пролет, поддерживают опертые на них конструкции покрытия, и подстропильные, если перекрывают 12-18-метровые шаги колонн продольного ряда и служат опорой для стропильных конструкций.

Железобетонные стропильные балки (рис. 11) перекрывают пролеты 6, 9, 12 и 18 м.

Рис. 11. Железобетонные стропильные балки:

а - односкатная таврового сечения; б - односкатная двутаврового сечения;

в -двускатная (пролетом 6-9 м); г -двускатная (пролетом 12-18 м);

д - решетчатая (пролетом 12-18 м); е - с параллельными поясами;

1 - опорный стальной лист; 2 - закладные детали

Для их изготовления используют бетон класса В15-В40. На верхнем поясе балок предусматривают закладные детали для крепления плит покрытия или прогонов, на нижней полке и стенке балки - закладные детали для крепления путей подвесного крана.

Балки крепят к колоннам сваркой закладных деталей.

Названия балок зависят от очертания верхнего пояса.

Односкатные балки применяются в однопролетных зданиях. Балки имеют тавровое сечение с утолщением на опорах и с толщиной стенки 100 мм. Для 12-метровых пролетов используются балки двутаврового сечения с предварительно напряженной арматурой.

Двускатные балки предназначены для зданий со скатной кровлей. Для пролетов 6 и 9 м применяются балки таврового сечения с утолщением на опоре и толщиной стенки 100 мм. Для 12-18-метровых пролетов предназначаются балки двутаврового сечения с вертикальной стенкой толщиной 80 мм и с предварительно напряженной арматурой.

Решетчатые балки имеют прямоугольное сечение с отверстиями для пропуска труб, электрокабелей и др.

Балки С параллельными поясами используются для зданий с плоской кровлей. Они имеют двутавровое сечение с утолщением в опорных узлах и толщиной вертикальной стенки 80 мм.

Железобетонные стропильные фермы (рис. 12) используются в зданиях пролетом 18, 24, 30, 36 м. Между нижним и верхним поясами ферм располагают систему стоек и раскосов. Решетка ферм предусматривается таким образом, чтобы плиты перекрытия шириной 1,5 и 3 м опирались на фермы в узлах стоек и раскосов. В основном применяются плиты 3 м, на особо нагруженных участках - 1,5 м.

Широкое применение получили сегментные безраскосные фермы пролетом 18 и 24 м, сечения верхнего и нижнего пояса прямоугольные.

Для уменьшения уклона покрытия для многопролетных зданий предусматривают устройство на верхнем поясе ферм специальных стоек (столбиков), на которые опирают плиты покрытия. Придание покрытию малого уклона обеспечивает лучшую возможность механизации кровельных работ, что создает большую надежность кровли в эксплуатации. Однако из-за необходимости увеличения при этом высоты наружных стен малоуклонные кровли целесообразны в многопролетных зданиях.

Подстропильные фермы изготовляют трех видов:

Для малоуклонных кровель большей высоты;

Для скатных кровель меньшей высоты с устройством стоек на опорах, служащих опорой для крайних настилов покрытия;

С провисающим нижним поясом.

В опорных частях подстропильной фермы и в ее среднем нижнем узле предусмотрены площадки для опирания стропильных ферм. Изготовляют фермы из бетона класса В25-В40. Нижний пояс выполняют предварительно напряженным и армируют пучками из высокопрочной проволоки. Для армирования верхнего пояса, раскосов и стоек применяют сварные каркасы из горячекатаной стали периодического профиля.

Крепят фермы к колоннам болтами и сваркой закладных деталей. В фермах предусмотрены закладные детали.

Рис. 12. Железобетонные фермы:

а, б - стропильные сегментные раскосные;

в _ стропильная арочная безраскосная;

г_ стропильная безраскосная с опорами для устройства плоских покрытий;

д _ стропильная с параллельными поясами;

е - подстропильная для скатных покрытий;

ж - подстропильная для плоских покрытий

Привязка колонн к разбивочным осям здания

В одноэтажных промышленных зданиях с железобетонным и смешанным каркасами колонны крайних рядов по отношению к продольным разбивочным осям имеют нулевую привязку, т.е. наружная грань колонны совмещается с продольной разбивочной осью и совпадает с внутренней гранью стенового ограждения. При этом между внутренней гранью панели и колонной должен быть предусмотрен зазор 30 мм (рис. 13).

Рис. 13. Привязка несущих конструкций одноэтажных

промышленных зданий к разбивочным осям:

а - продольных наружных стен и колонн (бескрановых зданий);

б - продольных стен и колонн (при кранах грузоподъемностью до 30 т);

в - продольных наружных стен и колонн (при кранах

грузоподъемностью до 50 т); г - в торцовых стенах;

д - в местах деформационных швов (ДШ); е - фрагмент плана здания;

1 - стены; 2 - колонны; 3 - подвесной кран; 4 - мостовой кран;

5 - фахверковая колонна; 6 - подкрановая балка

Колонны средних рядов в железобетонном, стальном и смешанном каркасах имеют по отношению к продольной разбивочной оси центральную привязку, т.е. разбивочная ось среднего ряда колонн совмещается с осью сечения надкрановой части колонн.

Колонны крайних рядов в стальном каркасе по отношению к продольной разбивочной оси имеют привязку 250 мм и совмещаются с внутренней гранью стеновой панели с зазором 30 мм.

Торцовые колонны основных рядов любого каркаса по отношению к крайней поперечной разбивочной оси имеют привязку 500 мм, т.е. ось колонны отстает от этой крайней поперечной разбивочной оси на 500 мм.

Все колонны фахверка устанавливаются в торцах пролетов с шагом 6 м и предназначены для навешивания на них стеновых панелей и восприятия ветровых нагрузок. Независимо от рода материала по отношению к поперечной разбивочной оси пролета колонны фахверка имеют нулевую привязку.

В железобетонном и смешанном каркасах при пролете 72 м и более, а в стальном каркасе - 120 м и более посредине пролетов в поперечном направлении предусматривается температурный шов, который устраивается за счет установки пары колонн, оси которых отстают от оси температурного шва, совмещенного с очередной шаговой осью, на 500 мм каждая. Благодаря этому создается два температурных блока, независимо работающих под нагрузкой. Для обеспечения пространственной жесткости и устойчивости колонн в вертикальном направлении в середине температурного блока меж ду колоннами предусматриваются вертикальные стальные связи (при шаге колонн 6м - крестовые, при шаге 12 м - портальные).

Продольные температурные швы или переход высот продольных пролетов решаются на двух рядах колонн, при этом предусматриваются парные разбивочные оси со вставкой 500, 1000, 1500 мм. В здании со стальным каркасом переход высот осуществляется на одной колонне за счет изменения высоты ее ветвей.

Примыкание двух взаимно-перпендикулярных пролетов осуществляется на двух колоннах со вставкой по наружной стене и в уровне покрытия. Размер вставки определяется в зависимости от толщины наружных стен и от привязки колонн.

В здании при наличии мостовых электрокранов вертикальные оси крановых путей отстают от продольных разбивочных осей здания на 750 мм (без прохода) и на 1000 мм (с проходом), а при наличии подвесных кранов вертикальные оси подвески и передвижения их отстают от продольных разбивочных осей на 1500 мм.

Обеспечение пространственной жесткости железобетонного каркаса

Система связей призвана обеспечить необходимую пространственную жесткость каркаса. В ее состав входят:

· вертикальные связи;

· горизонтальные связи по верхнему (сжатому) поясу ферм;

· связи по фонарям.

Вертикальные связи располагают:

· между колоннами в середине температурного блока в каждом ряду колонн: при шаге колонн 6м - крестовые; 12м - портальные. В зданиях бескрановых и с подвесными кранами связи ставят только при высоте колонн 9,6 м. Выполняют связи из уголков или швеллеров и крепят к колоннам с помощью косынок (рис. 14);

· между опорами ферм и балок связи ставят в крайних ячейках температурного блока в зданиях с плоским покрытием. Без подстропильных конструкций - в каждом ряду колонн, с подстропильной конструкцией - только в крайних рядах колонн.

Горизонтальными связями являются: плиты покрытия;

· в торцах фонарных проемов устойчивость стропильных балок и ферм обеспечивается горизонтальными крестовыми связями, установленными в уровне верхнего пояса, в последующих пролетах (под фонарями) - стальными распорками; при больших пролетах и высоте здания на уровне нижнего пояса ферм устраивают горизонтальные связи между крайними парами ферм, находящимися в торцах здания; в зданиях с шагом крайних и средних колонн 12 м предусматриваются горизонтальные фермы в торцах (по две в каждом пролете на температурный блок). Эти фермы стоят на уровне нижнего пояса стропильных ферм.

Узлы сборного железобетонного каркаса

Места сопряжений разнотипных элементов сборного каркаса называют узлами (рис. 15). Узлы железобетонных каркасов должны удовлетворять требованиям прочности, жесткости, долговечности; неизменяемости сопрягаемых элементов при действии монтажных и эксплуатационных нагрузок; простоты при монтаже и заделке.

Сопряжение колонны с фундаментом. Глубина заделки колонн прямоугольного сечения 0,85 м, двухветвевого - 1,2 м. Стык замоно-личивают бетоном класса не ниже В15. Бороздки на гранях колонны способствуют лучшему сцеплению бетона в полости стыка.

Опирание подкрановой балки на выступы колонны. К опорам балки (до ее установки) приваривают стальной лист с вырезами для анкерных болтов. На опорах колонны балку закрепляют к анкерным болтам и приваривают закладные детали. Верхнюю полку подкрановой балки закрепляют стальными планками, приваренными к закладным деталям.

Сопряжение стропильных ферм и балок с колонной. К опорам стропильных конструкций приваривают стальные листы. После установки и выверки опорные листы стропильных конструкций приваривают к закладным деталям на оголовке колонны.

Опирание подстропильных конструкций на оголовке колонны. Закладные детали стыкуемых элементов сваривают потолочным швом.

Крепление подвесных кранов к конструкциям покрытия. Несущие балки кранов закрепляют болтами к стальным обоймам на стропильных конструкциях. Перекидные балки перераспределяют нагрузку от подвесных кранов между узлами стропильных ферм.

Сопряжение стропильных и подстропильных элементов аналогично креплению ферм и балок на оголовке колонн.

Многоэтажный сборный железобетонный каркас

Многоэтажные промышленные здания возводят, как правило, каркасными.

В зависимости от типа перекрытия конструктивная схема здания может быть балочная и безбалочная.

В балочных железобетонных каркасах (рис. 16) несущими элементами являются фундаменты с фундаментными балками, колонны, ригели, панели перекрытий и покрытия, а также металлические связи.

Рис. 14 Обеспечение пространственной жесткости каркаса:

а - размещение горизонтальных связей в покрытии; б - усиление торцовых

стен венцовыми фермами; в - размещение вертикальных связей в зданиях

с плоскими покрытиями (без подстропильных конструкций);

г - вертикальные связи в зданиях с подстропильными конструкциями;

д - вертикальные крестовые связи; е - вертикальные портальные связи;

1 - колонны; 2 - стропильные фермы; 3 - плиты покрытия; 4 - фонарь;

5 - ветровая ферма; 6 - горизонтальная крестовая связь (в торцах фонарного проема); 7 - стальные распорки (в уровне верхнего пояса ферм); 8 - подкрановые балки; 9 - металлические связевые фермы между опорами стропильных ферм; 10 - вертикальные крестовые связи (в продольном ряду колонн); 11 - подстропильные фермы; 12 - вертикальные портальные связи (в продольном ряду колонн)


Рис. 15. Узлы железобетонного каркаса одноэтажных промышленных зданий: а - сопряжение колонны с фундаментом; б - опирание подкрановой балки

на колонну; в - сопряжение балок и ферм с колонной; г - опирание

подстропильных конструкций на оголовке колонны; д - крепление подвесных

кранов к несущим балкам покрытия; е - опирание стропильных

и подстропильных балок на оголовки колонны;

ж - сопряжение стропильных, подстропильных ферм;

1 - фундамент; 2 - колонна; 3 - монолитный бетон; 4 - бороздки;

5 - закладная деталь; 6 - крепежная планка; 7 - болты М20;

8 - опорный лист толщиной 12 мм; 9 - подстропильные балки;

10 -сварной потолочный шов; 11 - стропильная балка;

12 - стальная обойма; 13 - несущая балка подвесного крана;

14 - стропильная ферма


Рис. 16. Многоэтажное здание с балочными перекрытиями:

а - поперечный разрез здания с плитами, опертыми на полки ригелей;

б - план; в - детали каркаса; 1 - самонесущая стена; 2 - ригель с полками;

3 - ребристые плиты; 4 - консоль колонны;

5 - железобетонный элемент для заполнения деформационных швов


Рис. 17. Сопряжение колонн между собой и с ригелями:

а - конструкция стыка колонн; б - общий вид сопряжения колонны и ригеля;

1 - стыкуемые оголовки колонн; 2 - центрирующая прокладка;

3 - рихтовочная пластинка; 4 - арматура колонны рабочая;

5 - то же поперечная; 6 - стыковые стержни;

7 - зачеканка и замоноличивание бетоном класса В25; 8 - ригель;

9 - плита перекрытия (связевая); 10 -закладные детали колонны

ригеля и плит; 11 - сварка арматуры, выпущенной из колонны и ригелей;

12 - накладка для сварки плит

Фундаменты устраивают столбчатые стаканного типа.

Колонны сечением 400 х 400, 400 х 600 мм консольного типа высотой в один этаж (для зданий с высотой этажа 6 м и для верхних этажей трех- и пятиэтажных зданий), в два этажа (для двух нижних, а также для верхних этажей четырехэтажных зданий) и в три этажа (для зданий с высотой этажа 3,6 м). У крайних колонн для опирания ригелей имеются консоли с одной стороны, у средних колонн - консоли с обеих сторон. Колонны изготовляют из бетона класса В15-В40.

На консоли колонн в поперечном направлении укладывают ригели. Их изготовляют из бетона класса В25, В30. Ригели первого типа (с полками для опирания плит) перекрывают пролеты 6 и 9 м. Ригели второго типа имеют прямоугольное сечение, их применяют в перекрытиях при установке провисающего оборудования.

Плиты перекрытий и покрытий изготовляются с продольными и поперечными ребрами из бетона класса В15-В35. По ширине их подразделяют на основные и доборные, укладываемые у наружных продольных стен. У основных плит, укладываемых по верху ригелей, в торцах имеются вырезы (для пропуска колонн). При нагруз-ках на перекрытие до 125 кН/м 2 применяются плоские пустотелые плиты, а вдоль средних рядов колонн укладывают сантехнические панели.

Связи между колоннами устанавливают поэтажно в середине температурного блока по продольным рядам колонн. Их изготовляют из стальных уголков в виде порталов или треугольников такой же конструкции, как и в одноэтажных зданиях.

Привязка колонн крайних рядов и наружных стен к продольным разбивочным осям нулевая, либо разбивочная ось здания проходит по центру колонны. Привязка колонн торцовых стен принимается 500 мм, а в зданиях с сеткой колонн 6x6 м - осевая. Колонны средних рядов располагаются на пересечении продольных и поперечных осей. Узлы каркаса (рис. 17) - это опорные соединения однотипных или разнотипных сборных элементов, обеспечивающих пространственную жесткость конструктивных стержней. К основным узлам относят:

сопряжение ригелей с колоннами достигается сваркой закладных деталей ригелей и консолей колонн, а также сваркой выпусков верхней арматуры ригелей со стержнями, пропущенными сквозь тело колонны. Зазоры между колоннами и торцами ригелей заполняют бетоном;

стыки колонн многоэтажных зданий для удобства монтажа предусматривают на высоте 0,6 м от уровня пола. Торцы колонн снабжены стальными оголовкам. Стык осуществляется приваркой стыковых стержней к металлическим оголовкам с последующим замоноличиванием;

стыки плит перекрытия. Уложенные плиты соединяют сваркой закладных деталей с ригелями, с колоннами и между собой. Полости стыков между ребрами замоноличивают бетоном. Безбалочный железобетонный каркас с сеткой колонн 6x6м в виде многоярусной и многопролетной рамы с жесткими узлами и нагрузками на перекрытие от 5 до 30 кН/м 2 (рис. 18).

Основные элементы каркаса: колонны, капители, межколонные и пролетные плиты - изготовляют из бетона класса В25-В40.

Колонны высотой в один этаж устанавливают по сетке 6x6м. В верхней части колонны имеется уширение (оголовки) для опирания капителей, которое имеет вид опрокинутой усеченной пирамиды со сквозной полостью для сопряжения с концами колонн.

Рис. 18. Многоэтажное здание с безбалочными перекрытиями:

а - поперечный разрез; б - план; 1 - самонесущая стена;

2 - капитель колонны; 3 - плиты межколонные; 4 - то же пролетные

Рис.19 . Сборное безбалочное перекрытие:

а - план и разрезы; б - общий вид;

1 - оголовок колонны; 2 - капитель; 3 - плита межколонная;

4 - то же пролетная; 5 - монолитный бетон; 6 - монолитный железобетон;

7 - полка для опирания пролетной плиты; 8 - колонна

Капитель надевают на оголовок и крепят сваркой стальных закладных деталей. На капители в двух взаимно-перпендикулярных направлениях укладывают многопустотные межколонные плиты и приваривают по концам к закладным деталям капителей. После установки колонны следующего этажа стык заливают бетоном. Затем в зону между концами межколонных плит укладывают стальную арматуру, приваривая ее к закладным деталям. После забето-нирования плиты работают как неразрезные конструкции.

Участки перекрытия, ограниченные межколонными плитами, заполняют пролетными плитами квадратной формы, опирая их по контуру на четверти, предусмотренные в боковых гранях межколонных плит.

К основным узлам безбалочного каркаса относят (рис. 19): стыки колонн, расположенные на 1 м выше перекрытия, такой же конструкции, как и в балочном каркасе; стык капители с колонной. На четырехстороннюю консоль колонны опирают капитель, приваривая снизу закладные детали, а сверху арматурные накладки. Зазор между колонной и капителью замоноличивают бетоном класса В25; стыки плит перекрытия. Межколонные плиты опирают выпусками арматуры на закладные детали, замоноличивая стык бетоном. Пролетные плиты опирают выпусками арматуры на закладные детали межколонных панелей. После сварки клиновидные пазы стыков замоноличивают.


Балки покрытий могут иметь пролет 12 и 18 м, а в отдельных конструкциях - пролет 24 м. Очертание верхнего пояса при двускатном покрытии может быть трапециевидным с постоянным уклоном, ломаным или криволинейным, рисунок 4.8. Балки односкатного покрытия выполняют с параллельными поясами или ломаным нижним поясом, плоского покрытия - с параллельными поясами. Шаг балок покрытий - 6 или 12 м.

Рисунок 4.8 - Конструктивные схемы балок покрытий:

а) – двускатная с прямолинейным очертанием пояса; б)- то же ломанным; в) - то же криволинейным; г) – односкатных с параллельными поясами; д) - то же с ломаным нижнем поясе; е) – плоские

Наиболее экономичное поперечное сечение балок покрытий - двутавровое со стенкой, толщину которой (60...100 мм) устанавливают главным образом из условий удобства размещения арматурных каркасов, обеспечения прочности и трещиностойкости. У опор толщина стенки плавно увеличивается и устраивается уширение в виде вертикального ребра жесткости. Стенки балок в средней части пролета, где поперечные силы незначительны, могут иметь отверстия круглой или многоугольной формы, что несколько уменьшает расход бетона, создает технологические удобства для сквозных проводок и различных коммуникаций.

Высоту сечения балок в середине пролета принимают 1/10...1/15l . Высоту сечения двускатной трапециевидной балки в середине пролета определяют уклон верхнего пояса (1:12) и типовой размер высоты сечения на опоре (800 мм или 900мм). В балках с ломаным очертанием верхнего пояса благодаря несколько большему уклону верхнего пояса в крайней четверти пролета достигается большая высота сечения в пролете при сохранении типового размера - высоты сечения на опоре. Балки с криволинейным верхним поясом приближаются по очертанию к эпюре изгибающих моментов и теоретически несколько выгоднее по расходу материалов; однако усложненная форма повышает стоимость их изготовления.


Ширину верхней сжатой полки балки для обеспечения устойчивости при транспортировании и монтаже принимают 1/50...1/60l . Ширину нижней полки для удобного размещения продольной растянутой арматуры - 250...300 мм.

Двускатные балки выполняют из бетона класса В25...В40 и армируют напрягаемой проволочной, стержневой и канатной арматурой, рисунок 4.9. При армировании высокопрочной проволокой ее располагают группами по 2 шт. В вертикальном положении, что создает удобства для бетонирования балок в вертикальном положении. Стенку балки армируют сварными каркасами, продольные стержни которых являются монтажными, а поперечные - расчетными, обеспечивающими прочность балки по наклонным сечениям. Приопорные участки балок для предотвращения образования продольных трещин при отпуске натяжения арматуры (или для ограничения ширины их раскрытия) усиливают дополнительными поперечными стержнями, которые приваривают к стальным закладным деталям. Повысить трещиностойкости приопорного участка балки можно созданием двухосного предварительного напряжения (натяжением также и поперечных стержней).



Двускатные балки двутаврового сечения для ограничения ширины раскрытия трещин, возникающих в верхней зоне при отпуске натяжения арматуры, целесообразно армировать так же и конструктивной напрягаемой арматурой, размещаемой в уровне верха сечения на опоре, рисунок 4.10. Этим уменьшаются эксцентриситет силы обжатия и предварительные растягивающие напряжения в бетоне верхней зоны.

Двускатные балки прямоугольного сечения с часто расположенными отверстиями условно называют решетчатыми балками, рисунок 4.11. Типовые решетчатые балки в зависимости от значения расчетной нагрузки имеют градацию ширины прямоугольного сечения 200, 240 и 280 мм. Для крепления плит покрытий в верхнем поясе балок всех типов заложены стальные детали.

Рисунок 4.9 - Двускатная балка покрытия двутаврового сечения пролетом 18 м: 1 - напрягаемая арматура; 2 - сварные каркасы; 3 - опорный лист δ=10 мм; 4 - анкеры опорного листа; 5 - хомуты Ø5 мм через 50; 6 - стенки Ø5 мм


Рисунок 4.10 - Схема расположения напрягаемой арматуры двухскатной балки:

1 – нижняя арматура; 2 – верхняя арматура

Рисунок 4.11 - Двускатная решетчатая балка покрытия прямоугольного сечения пролетом 18 м


Дисциплина «Конструкции из дерева и пластмасс»



5.1 Подобрать сечение однопролётной шарнирно опёртой балки из древесины, сосна 2 сорта. Балка имеет пролёт l =4 м и воспринимает равномерно распределённую нагрузку q =2,2 кН/м .

Изгибающий момент: М=2,2·4 2 /8=4,4 кНм. Требуемый момент сопротивления: W тр =M/Ru=4,4·100/1,3=338,5 см 3

где R u =13 МПа=1,3 кН/см 2

Задаёмся шириной сечения в=10 см; найдём

h тр = 6Wтт = 6 × 338,5 =14,25 см
в

Принимаем балку сечением в·h=10·15, F=150 см 2 .

W=bh 2 /6=10·15 2 /6=375 см 4 .

I=bh 3 /12=10·15 3 /12=2812,5 см 3 .

5.2 Определить несущую способность центрально сжатого стержня, у которого один конец защемлен в фундаменте, другой – свободный. Материал-пихта II сорта. Условия эксплуатации – В1. Поперечное сечение стержня – 100х150 мм, геометрическая длина l =3 м

Несущая способность центрально-сжатого стержня с учетом его устойчивости определяется по формуле:

N=φА расч m п m в R c .

где m п = 0,8;

R c = 13МПа (для пихты II сорта).

Расчетная площадь сечения находится по формуле:


А расч. = А вр. (т.к. отсутствуют ослабления, по СП 64.13330.2011).

А расч. = 10 . 15=150 см 2

Для определения коэффициента φ подсчитываем λ гибкость элемента

Расчет ведем на большую гибкость λ х =103,8. Для гибкости λ>70 определяем коэффициент φ по формуле.

Понравилась статья? Поделитесь ей
Наверх