Понятие анаболизма и катаболизма. Анаболические и катаболические процессы

Связь между катаболизмом и анаболизмом проявляется на трех уровнях - источников углерода, энергетическом и восстановительных реакций анаболизма.

На уровне источников углерода. Промежуточные продукты центральных путей катаболизма становятся субстратами для анаболических реакций, в процессе которых образуются структурные блоки, необходимые для синтеза макромолекул.

На энергетическом уровне. В процессе катаболизма вырабатывается метаболическая энергия в форме АТФ; анаболические же процессы, как правило, являются эндергоническими и потребляют АТФ.

На уровне восстановительной способности. Катаболические процессы являются в основном окислительными и служат донорами высокоэнергетических электронов, для анаболизма же характерно обратное. Основным донором электронов в восстановительных реакциях биосинтеза является НАДФН, восстановление которого происходит в реакциях катаболизма, большей частью в пентозофосфатном пути окисления глюкозы. Напомним существенное различие в функциях НАДФН и НАДН. При катаболизме образуются восстановленные формы как НАДФ + , так и НАД + , а при анаболизме потребляется почти исключительно НАДФН, в то время как НАДН служит донором высокоэнергетических электронов в процессах митохондриального окисления, сопряженного с синтезом АТФ. Основное различие в реакциях путей катаболизма и анаболизма заключается в том, что они редко повторяют друг друга.

Это совершенно очевидно, когда продукт катаболизма не идентичен тому источнику углерода, который используется в процессе анаболизма. Так, при синтезе многих аминокислот, например при распаде ароматических аминокислот, образуются ацетил-КоА и фумаровая или янтарная кислоты, тогда как для синтеза тех же аминокислот исходными продуктами служат фосфоенолпи- ровиноградная кислота и альдотетрозофосфат.

Иной представляется картина для обмена жирных кислот. Здесь катаболизм завершается образованием ацетил-КоА, а биосинтез начинается с того же самого промежуточного продукта и идет по пути, который на первый взгляд представляется простым повторением катаболической последовательности реакций в обратном порядке. В главе 23 было обращено внимание на то, что это далеко не так. Во-первых, ацетил-КоА должен сначала превратиться в более реакционноспособный малонил-КоА, который не является промежуточным продуктом при катаболизме; во-вторых, весь набор ферментов, ответственных за превращение малонил-КоА в ацил производные с более длинной цепью, отличается от набора ферментов, участвующих в катаболизме, и, наконец, в-третьих, эти ферменты локализованы совсем в другом компартмснтс клетки.

Даже при биосинтезе глюкозы, который протекает в основном по пути обращения целого ряда легко обратимых ферментативных реакций гликолиза, синтез отличается от распада в двух наиболее критических точках всей последовательной цепи реакций, а именно в начале и конце. Так, например, в процессе катаболизма глюкоза превращается в глюкозо-6-фосфат посредством реакции трансфосфорилирования с участием АТФ; однако при анаболизме она образуется из фосфорного эфира путем простого гидролиза. Пируват образуется катаболически из фосфоенолпирувата путем трансфосфорилирования - переноса фосфатной группы на АДФ; в анаболических же процессах он используется у большинства организмов благодаря двум связанным реакциям: сначала пируват карбоксилируется до оксалоацетата и только потом превращается в фосфоснолпируват.

Следует отметить, что разделение путей биосинтеза и распада имеет важное значение для эффективной регуляции метаболизма.

13.4.1. Реакции цикла Кребса относятся к третьей стадии катаболизма питательных веществ и происходят в митохондриях клетки. Эти реакции относятся к общему пути катаболизма и характерны для распада всех классов питательных веществ (белков, липидов и углеводов).

Главной функцией цикла является окисление ацетильного остатка с образованием четырёх молекул восстановленных коферментов (трёх молекул НАДН и одной молекулы ФАДН2 ), а также образование молекулы ГТФ путём субстратного фосфорилирования. Атомы углерода ацетильного остатка выделяются в виде двух молекул СО2 .

13.4.2. Цикл Кребса включает 8 последовательных стадий, обращая особое внимание на реакции дегидрирования субстратов:

Рисунок 13.6. Реакции цикла Кребса, включая образование α-кетоглутарата

а) конденсация ацетил-КоА с оксалоацетатом , в результате которой образуется цитрат (рис.13.6, реакция 1); поэтому цикл Кребса называют также цитратным циклом . В этой реакции метильный углерод ацетильной группы взаимодействует с кетогруппой оксалоацетата; одновременно происходит расщепление тиоэфирной связи. В реакции освобождается КоА-SH, который может принять участие в окислительном декарбоксилировании следующей молекулы пирувата. Реакцию катализирует цитратсинтаза , это - регуляторный фермент, он ингибируется высокими концентрациями НАДН, сукцинил-КоА, цитрата.

б) превращение цитрата в изоцитрат через промежуточное образование цис-аконитата. Образующийся в первой реакции цикла цитрат содержит третичную гидроксильную группу и не способен окисляться в условиях клетки. Под действием фермента аконитазы идёт отщепление молекулы воды (дегидратация), а затем её присоединение (гидратация), но другим способом (рис.13.6, реакции 2-3). В результате данных превращений гидроксильная группа перемещается в положение, благоприятствующее её последующему окислению.

в) дегидрирование изоцитрата с последующим выделением молекулы СО2 (декарбоксилированием) и образованием α-кетоглутарата (рис. 13.6, реакция 4). Это - первая окислительно-восстановительная реакция в цикле Кребса, в результате которой образуется НАДН. Изоцитратдегидрогеназа , катализирующая реакцию, - регуляторный фермент, активируется АДФ. Избыток НАДН ингибирует фермент.


Рисунок 13.7. Реакции цикла Кребса, начиная с α-кетоглутарата.

г) окислительное декарбоксилирование α-кетоглутарата , катализируется мультиферментным комплексом (рис. 13.7, реакция 5), сопровождается выделением СО2 и образованием второй молекулы НАДН. Эта реакция аналогична пируватдегидрогеназной реакции. Ингибитором служит продукт реакции - сукцинил-КоА.

д) субстратное фосфорилирование на уровне сукцинил-КоА, в ходе которого энергия, освобождающаяся при гидролизе тиоэфирной связи, запасается в форме молекулы ГТФ. В отличие от окислительного фосфорилирования, этот процесс протекает без образования электрохимического потенциала митохондриальной мембраны (рис. 13.7, реакция 6).

е) дегидрирование сукцината с образованием фумарата и молекулы ФАДН2 (рис. 13.7, реакция 7). Фермент сукцинатдегидрогеназа прочно связан с внутренней мембраной митохондрии.

ж) гидратация фумарата , в результате чего в молекуле продукта реакции появляется легко окисляемая гидроксильная группа (рис. 13.7, реакция 8).

з) дегидрирование малата , приводящее к образованию оксалоацетата и третьей молекулы НАДН (рис.13.7, реакция 9). Образующийся в реакции оксалоацетат может вновь использоваться в реакции конденсации с очередной молекулой ацетил-КоА (рис. 13.6, реакция 1). Поэтому данный процесс носит циклический характер.

13.4.3. Таким образом, в результате описанных реакций подвергается полному окислению ацетильный остаток СН3 -СО- . Количество молекул ацетил-КоА, превращаемых в митохондриях в единицу времени, зависит от концентрации оксалоацетата. Основные пути увеличения концентрации оксалоацетата в митохондриях (соответствующие реакции будут рассмотрены позднее):

а) карбоксилирование пирувата - присоединение к пирувату молекулы СО2 с затратой энергии АТФ; б) дезаминирование или трансаминирование аспартата - отщепление аминогруппы с образованием на её месте кетогруппы.

13.4.4. Некоторые метаболиты цикла Кребса могут использоваться для синтеза структурных блоков для построения сложных молекул. Так, оксалоацетат может превращаться в аминокислоту аспартат, а α-кетоглутарат - в аминокислоту глутамат. Сукцинил-КоА принимает участие в синтезе гема - простетической группы гемоглобина. Таким образом, реакции цикла Кребса могут участвовать как в процессах катаболизма, так и анаболизма, то есть цикл Кребса выполняет амфиболическую функцию (см. 13.1).

А метаболизм – это основа всех процессов жизнедеятельности организма:

  • превращение энергии и веществ в живом организме, что позволяет клеткам, расти, развиваться и сохранять свою структуру;
  • обмен энергией и веществами между самим организмом и окружающей средой.

На скорость метаболических реакций оказывают влияние следующие факторы:

  • пол: основные метаболические процессы у мужчин протекают на 10 – 20 % выше, чем у женщин;
  • возраст: с 25 – 30 – ти лет скорость метаболических процессов снижается в среднем на 3%, это происходит каждые десять лет;
  • вес: чем выше общая масса внутренних органов, мышц и костей, тем выше будет катаболизм;
  • регулярные занятия спортом ускоряют метаболизм – в первые два – три часа в среднем на 30%, далее в течение суток – на 5%.

Процессы анаболизма и катаболизма

Анаболизм (пластический обмен) – это процесс создания новых клеток и их структур, органических веществ и тканей организма, сопровождающийся поглощением энергии.

Этот процесс способствует:

  • развитию и росту новых тканей, в том числе и мышц;
  • обновлению и восстановлению биологических структур (клеток, тканей);
  • минерализации костей.

Процессы анаболизма происходят в покое и под действием анаболических гормонов (инсулин, гормон роста, стероиды), а также веществ с анаболической активностью (аминокислоты, протеины и др.).

Клинические примеры анаболизма – рост ногтей, мышечной массы, заживление трещин костей.

Катаболизм (энергетический обмен) – противоположный анаболизму процесс расщепления сложных веществ, структур клеток, органов и тканей до простых веществ.

Этапы катаболизма происходят с образованием энергии в виде АТФ. Таким образом, важнейшая функция катаболизма — обеспечить организм необходимой энергией из продуктов питания и дальнейшее использование этой энергии в нуждах организма.

Катаболизм провоцируют:

  • голодание и др. ситуации, сопровождающиеся повышением концентрации адреналина;

Стадии катаболизма

  1. Крупные молекулы (белки, жиры и углеводы) расщепляются до простых молекул. Этот процесс происходит в желудочно-кишечном тракте, вне клетки.
  2. Во второй стадии простые молекулы поступают внутрь клетки, начинается образование энергии.
  3. Третья стадия – дыхания (с участием кислорода), заканчивается она образованием углекислого газа, воды и большого количества энергии.

Клинический пример катаболизма – сжигание жира — похудение.

Процессы анаболизма и катаболизма в организме могут находиться в двух состояниях: равновесия или временного преобладания друг над другом.

Преобладание анаболического процесса способствует накоплению массы и росту тканей, а катаболического – к разрушению тканевых структур и образованию энергии.

Соотношение равновесия или неравновесия анаболизма и катаболизма находится в зависимости от возраста:

  • У детей преобладают анаболические процессы;
  • У взрослых оба процесса находятся в равновесии, но их соотношение может меняться от состояния здоровья, физической и психо-эмоциональной нагрузки;
  • У пожилых преобладает процесс катаболизма.

Взаимосвязь анаболизма и катаболизма

Анаболизм и катаболизм – два абсолютно противоположных процесса, но несмотря на это, они тесно взаимосвязаны.

В результате катаболических реакций образуются вещества и энергия, которые используются при анаболическом процессе. А анаболизм осуществляет поставку ферментов и веществ, необходимых для катаболизма.

Так, например, организм человека может покрыть свою потребность в 14-ти аминокислотах . Дисбаланс этих процессов может привести к гибели организма.

Давайте разберемся, и чем он отличается от остальных добавок.

Научитесь . Это не так сложно, как кажется.

Что предпринять, чтобы убрать пивной живот? Для начала прочитать это: . Все о питании и нужных упражнениях.

Анаболизм и катаболизм в спорте

Физическая нагрузка – тренировка – это сильный стресс для организма. А как мы писали выше, это то, что нужно для запуска катаболической реакции. Тренировки вынуждают организм искать энергию не только в жирах, которые мы усиленно пытаемся сжечь, но и в белках.

Результатом такой катаболической реакции становится не только похудение, но и потеря мышечной массы в результате катаболизма мышц, что ужасно для спортсмена.

Поэтому, в спорте большое значение имеет катаболизм белков, при котором разрушаются протеин мышц до аминокислот. Главная задача спортсмена – ослабить катаболизм белков и запустить анаболизм. На таком принципе строится питание бодибилдеров, атлетов, комплексы спортивных добавок, режим отдыха.

Способы изменения метаболизма в сторону преобладания анаболических процессов:

Диета – увеличить потребление белковой пищи. Чем больше протеина, тем больше строительного материала для клеток и мышц. Стоит отметить, что протеин не будет так полезен, если еда будет низкокалорийной, т.к. будет не хватать энергии организму. Все должно быть сбалансировано.

Можно использовать в своем рационе аминокислотные добавки , они усваиваются быстрее белковых продуктов, т.к. не тратится время на их переваривание. Как результат, мышечные клетки получают быстрее строительный материал и соответственно быстрее восстанавливаются и увеличиваются в объеме.

Подавить катаболизм – непростая задача, но выполнимая: знать меру в тренировках (можно даже их сократить до 30 мин), много спать, не пропускать прием пищи, избегать стрессов и переутомлений.

Ускорить анаболизм с помощью допинга – специального набора гормонов, что не рекомендуется делать, т.к. он запрещен и вреден для организма (приводит к гормональному дисбалансу).

Динамическое равновесие анаболизма с катаболизмом обеспечивает правильный обмен веществ и хорошее самочувствие. Будьте здоровы!

Здравствуйте дорогие читатели, сегодня я хотел бы рассказать о таких важный понятиях как анаболизм, катаболизм и метаболизм (обмен веществ). Так как все о них уже слышали, но не все знают, что они означают. Поэтому давайте разберемся, что же это такое.

Это набор химических реакций, которые поддерживают жизнь живого организма (размножение и рост). Метаболизм делится на 2 вида: анаболизм и катаболизм, поэтому одно без другого не может существовать. Что бы было понятнее – рассмотрим метаболизм на примере живого существа (человека, животного итак далее):

В процессе эволюции живые организмы научились выживать за счет того, что у них развился механизм накопления и сжигания внутреннего вещества (анаболизм и катаболизм). Это можно представить в виде агрегата работающего на солнечных батареях. Есть солнце, все крутится и вертится, а лишняя энергия запасается в аккумуляторы (анаболизм). Нет солнца, начинают работать батареи (катаболизм). И если долго не будет солнца, то наш механический прообраз человеческого организма - остановится.

Поэтому жизнь устроена почтитак, если рассматривать ее в первом приближении. Наш организм основан на том же принципе, что даже если после длительного не поступления в организм энергии (пищи), он не выйдет из строя. Живые существа научились частично разрушать себя, используя высвободившуюся энергию для продолжения движения, чтобы найти пищу. Пока ученые не сумели сделать такой механизм в лаборатории и, наверное, они не скоро научатся. Природе для этого понадобилось огромный период времени…

Анаболизм и катаболизм

Теперь, когда все примерно стало понятно с метаболизмом, давайте разберемся с терминами анаболизма и катаболизма.

Анаболизм – это процесс создания (синтез) новых веществ, клеток и тканей. Например, создание мышечных волокон, новых клеток, накопление жиров, синтез гормонов и белков.

Катаболизм – это процесс обратный анаболизму, то есть расщепление сложных веществ на более простые, и распад тканей и клеток. Например расщепление (разрушение) жиров, продуктов питания итак далее.

Не надо быть провидцем, чтобы понять, что эти два процесса должны уравновешивать друг друга. Поэтому только тогда живое существо сможет сохранять свое здоровье и жизнь. На этом месте можно было бы сделать паузу и спросить себя, а зачем мне все это нужно знать? Все ведь так хорошо устроено.

Так-то оно так, но есть беспокойные люди, которым очень хочется нарушить это равновесие, чтобы получить, например, увеличение мышечной массы. Они готовы часами доводить себя на тренировках в тренажерных залах, чтобы увеличить свой бицепс или косую мышцу. Даже придуман был для этого особый вид спорта – бодибилдинг. Так вот, если человек занимаясь, немного представляет, что внутри его организма происходит это одно, а когда делает это по незнанию, это другое.

В жизни тоже много ситуаций, которые хочется как-то объяснить, чтобы понять и принять правильное решение. Возьмем простой пример: молодая и стройная девушка, кушает все подряд и при этом не набирает в весе. Прошло пару десятков лет и вдруг все изменилось - она пополнела.

А связано это с тем, что с годами обменные процессы (метаболизм) замедляются, а это и приводит к накоплению лишнего веса, если как следует не следить за собой (правильное питание и подвижный образ жизни). Однако не у всех так происходит, есть счастливчики, которые всю жизнь кушают все подряд, не занимаются спортом и остаются стройными…

Анаболические стероиды

Это гормональные препараты, которые используются спортсменами для увеличения мышечной массы, но данные препараты очень опасны для здоровья. Так как они вмешиваются в анаболический процесс, то есть создание новых клеток и тканей, что ведет к нарушению гормонального фона (гормональной системы). В результате такого вмешательства могут возникнуть проблемы со здоровьем, таких органов как: сердце, печень и почки.

Но так же есть и «катаболические» стероиды, которые применяют в медицине для лечения различных тяжелых заболеваний, однако ими пользуются и спортсмены для ускоренного сжигания жиров (сушка). Онитак же вредны и вмешиваются в гормональную систему, действие таких препаратов-обратно действию (обратно пропорционально) анаболических. Поэтому занимайтесь «чистым» спортом без каких либо препаратов и будите здоровы.

Подведем итог. Метаболизм – это процесс химических реакция который поддерживает жизнь (размножение и рост), а состоит метаболизм из двух составляющих: анаболизм (создание новых веществ и клеток) и катаболизм (расщепления сложных веществ на более простые). И одно без другого не может существовать (анаболизм и катаболизм), так как баланс (равновесие) – это есть жизнь (гармония). Занимайтесь «чистым» спортом без каких либо анаболических и катаболических препаратов, которые гробят ваше здоровье.

Занимайтесь спортом, питайтесь правильно – успехов Вам!

Процессы пластического и энергетического обмена неразрывно связаны между собой. Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.

Роль ФТФ в метаболизме

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам.

АТФ (аденозинтрифосфорная кислота) - мононуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты, соединяющихся между собой макроэргическими связями.

В этих связях запасена энергия, которая высвобождается при их разрыве:
АТФ + H 2 O → АДФ + H 3 PO 4 + Q 1
АДФ + H 2 O → АМФ + H 3 PO 4 + Q 2
АМФ + H 2 O → аденин + рибоза + H 3 PO 4 + Q 3 ,
где АТФ - аденозинтрифосфорная кислота; АДФ - аденозиндифосфорная кислота; АМФ - аденозинмонофосфорная кислота; Q 1 = Q 2 = 30,6 кДж; Q 3 = 13,8 кДж.
Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования. Фосфорилирование - присоединение остатка фосфорной кислоты к АДФ (АДФ + Ф → АТФ). Он происходит с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 мин).
Энергия, накопленная в молекулах АТФ, используется организмом в анаболических реакциях (реакциях биосинтеза). Молекула АТФ является универсальным хранителем и переносчиком энергии для всех живых существ.

Энергетический обмен

Энергию, необходимую для жизнедеятельности, большинство организмов получают в результате процессов окисления органических веществ, то есть в результате катаболических реакций. Важнейшим соединением, выступающим в роли топлива, является глюкоза.
По отношению к свободному кислороду организмы делятся на три группы.

Классификация организмов по отношению к свободному кислороду

У облигатных аэробов и факультативных анаэробов в присутствии кислорода катаболизм протекает в три этапа: подготовительный, бес- кислородный и кислородный. В результате органические вещества распадаются до неорганических соединений. У облигатных анаэробов и факультативных анаэробов при недостатке кислорода катаболизм протекает в два первых этапа: подготовительный и бескислородный. В результате образуются промежуточные органические соединения, еще богатые энергией.

Этапы катаболизма

1. Первый этап - подготовительный - заключается в ферментативном расщеплении сложных органических соединений на более простые. Белки расщепляются до аминокислот, жиры - до глицерина и жирных кислот, полисахариды - до моносахаридов, нуклеиновые кислоты - до нуклеотидов. У многоклеточных организмов это происходит в желудочно-кишечном тракте, у одноклеточных - в лизосомах под действием гидролитических ферментов. Высвобождающаяся при этом энергия рассеивается в виде теплоты. Образовавшиеся органические соединения либо подвергаются дальнейшему окислению, либо используются клеткой для синтеза собственных органических соединений.
2. Второй этап - неполное окисление (бескислородный) - заключается в дальнейшем расщеплении органических веществ, осуществляется в цитоплазме клетки без участия кислорода. Главным источником энергии в клетке является глюкоза. Бескислородное, неполное окисление глюкозы называется гликолизом. В результате гликолиза одной молекулы глюкозы образуется по две молекулы пировиноградной кислоты (ПВК, пируват) CH 3 COCOOH, АТФ и воды, а также атомы водорода, которые связываются молекулой-переносчиком НАД + и запасаются в виде НАД·Н.
Суммарная формула гликолиза имеет следующий вид:
C 6 H 12 O 6 + 2H 3 PO 4 + 2АДФ + 2НАД+ → 2C 3 Н 4 O 3 + 2H 2 O + 2АТФ + 2НАД·Н.
Далее при отсутствии в среде кислорода продукты гликолиза (ПВК и НАД·Н) перерабатываются либо в этиловый спирт - спиртовое брожение (в клетках дрожжей и растений при недостатке кислорода)
CH 3 COCOOH → СО 2 + СН 3 СОН
СН 3 СОН + 2НАД·Н → С 2 Н 5 ОН + 2НАД + ,
либо в молочную кислоту - молочнокислое брожение (в клетках животных при недостатке кислорода)
CH 3 COCOOH + 2НАД·Н → C 3 Н 6 O 3 + 2НАД + .
При наличии в среде кислорода продукты гликолиза претерпевают дальнейшее расщепление до конечных продуктов.
3. Третий этап - полное окисление (дыхание) - заключается в окислении ПВК до углекислого газа и воды, осуществляется в митохондриях при обязательном участии кислорода.
Он состоит из трёх стадий:
А) образование ацетилкоэнзима А;
Б) окисление ацетилкоэнзима А в цикле Кребса;
В) окислительное фосфорилирование в электронотранспортной цепи.

А. На первой стадии ПВК переносится из цитоплазмы в митохондрии, где взаимодействует с ферментами матрикса и образует 1) диоксид углерода, который выводится из клетки; 2) атомы водорода, которые молекулами-переносчиками доставляются к внутренней мембране митохондрии; 3) ацетилкофермент А (ацетил-КоА).
Б. На второй стадии происходит окисление ацетилкоэнзима А в цикле Кребса. Цикл Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты) - это цепь последовательных реакций, в ходе которых из одной молекулы ацетил-КоА образуются 1) две молекулы диоксида углерода, 2) молекула АТФ и 3) четыре пары атомов водорода, передаваемые на молекулы-переносчики - НАД и ФАД. Таким образом, в результате гликолиза и цикла Кребса молекула глюкозы расщепляется до СО 2 , а высвободившаяся при этом энергия расходуется на синтез 4 АТФ и накапливается в 10 НАД·Н и 4 ФАД·Н 2 .
В. На третьей стадии атомы водорода с НАД·Н и ФАД·Н 2 окисляются молекулярным кислородом О 2 с образованием воды. Один НАД·Н способен образовывать 3 АТФ, а один ФАД·Н 2 –2 АТФ. Таким образом, выделяющаяся при этом энергия запасается в виде ещё 34 АТФ.
Этот процесс протекает следующим образом. Атомы водорода концентрируются около наружной стороны внутренней мембраны митохондрии. Они теряют электроны, которые по цепи молекул-переносчиков (цитохромов) электронотранспортной цепи (ЭТЦ) переносятся на внутреннюю сторону внутренней мембраны, где соединяются с молекулами кислорода:
О 2 + е - → О 2 - .
В результате деятельности ферментов цепи переноса электронов внутренняя мембрана митохондрий изнутри заряжается отрицательно (за счёт О 2 -), а снаружи - положительно (за счёт Н +), так что между её поверхностями создаётся разность потенциалов. Во внутреннюю мембрану митохондрий встроены молекулы фермента АТФ- синтетазы, обладающие ионным каналом. Когда разность потенциалов на мембране достигает критического уровня, положительно заряженные частицы H + силой электрического поля начинают проталкиваться через канал АТФазы и, оказавшись на внутренней поверхности мембраны, взаимодействуют с кислородом, образуя воду:
1/2О 2 - +2H + → Н 2 О.
Энергия ионов водорода H + , транспортирующихся через ионный канал внутренней мембраны митохондрии, используется для фосфорилирования АДФ в АТФ:
АДФ + Ф → АТФ.
Такое образование АТФ в митохондриях при участии кислорода называется окислительным фосфорилированием.
Суммарное уравнение расщепления глюкозы в процессе клеточного дыхания:
C 6 H 12 O 6 + 6O 2 + 38H 3 PO 4 + 38АДФ → 6CO 2 + 44H 2 O + 38АТФ.
Таким образом, в ходе гликолиза образуются 2 молекулы АТФ, в ходе клеточного дыхания - ещё 36 молекул АТФ, в целом при пол- ном окислении глюкозы - 38 молекул АТФ.

Пластический обмен

Пластический обмен, или ассимиляция, представляет собой совокупность реакций, обеспечивающих синтез сложных органических соединений из более простых (фотосинтез, хемосинтез, биосинтез белка и др.).

Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул:
органические вещества пищи (белки, жиры, углеводы) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).
Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе фото- и хемосинтеза происходит образование простых органических соединений, из которых в дальнейшем синтезируются макромолекулы:
неорганические вещества (СО 2 , Н 2 О) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).

Фотосинтез

Фотосинтез - синтез органических соединений из неорганических за счёт энергии света. Суммарное уравнение фотосинтеза:

Фотосинтез протекает при участии фотосинтезирующих пигментов , обладающих уникальным свойством преобразования энергии солнечного света в энергию химической связи в виде АТФ. Фотосинтезирующие пигменты представляют собой белковоподобные вещества. Наиболее важным является пигмент хлорофилл. У эукариот фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид, у прокариот - во впячивания цитоплазматической мембраны.
Строение хлоропласта очень похоже на строение митохондрии. Во внутренней мембране тилакоидов гран содержатся фотосинтетические пигменты, а также белки цепи переноса электронов и молекулы фермента АТФ-синтетазы.
Процесс фотосинтеза состоит из двух фаз: световой и темновой.
1. Световая фаза фотосинтеза протекает только на свету в мембране тилакоидов граны.
К ней относятся поглощение хлорофиллом квантов света, образование молекулы АТФ и фотолиз воды.
Под действием кванта света (hv) хлорофилл теряет электроны, переходя в возбуждённое состояние:

Эти электроны передаются переносчиками на наружную, то есть обращенную к матриксу поверхность мембраны тилакоидов, где накапливаются.
Одновременно внутри тилакоидов происходит фотолиз воды, то есть её разложение под действием света:

Образующиеся электроны передаются переносчиками к молекулам хлорофилла и восстанавливают их. Молекулы хлорофилла возвращаются в стабильное состояние.
Протоны водорода, образовавшиеся при фотолизе воды, накапливаются внутри тилакоида, создавая Н + -резервуар. В результате внутренняя поверхность мембраны тилакоида заряжается положительно (за счёт Н +), а наружная - отрицательно (за счёт е -). По мере накопления по обе стороны мембраны противоположно заряженных частиц нарастает разность потенциалов. При достижении критической величины разности потенциалов сила электрического поля начинает проталкивать протоны через канал АТФ-синтетазы. Выделяющаяся при этом энергия используется для фосфорилирования молекул АДФ:
АДФ + Ф → АТФ.

Образование АТФ в процессе фотосинтеза под действием энергии света называется фотофосфорилированием .
Ионы водорода, оказавшись на наружной поверхности мембраны тилакоида, встречаются там с электронами и образуют атомарный водород, который связывается с молекулой-переносчиком водорода НАДФ (никотинамидадениндинуклеотидфосфат):
2Н + + 4е – + НАДФ + → НАДФ·Н 2 .
Таким образом, во время световой фазы фотосинтеза происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ и образование атомов водорода в форме НАДФ·Н 2 . Кислород диффундирует в атмосферу, а АТФ и НАДФ·Н 2 участвуют в процессах темновой фазы.
2. Темновая фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте и представляет собой ряд последовательных преобразований СО 2 , поступающего из воздуха, в цикле Кальвина. Осуществляются реакции темновой фазы за счёт энергии АТФ. В цикле Кальвина СО 2 связывается с водородом из НАДФ·Н 2 с образованием глюкозы.
В процессе фотосинтеза кроме моносахаридов (глюкоза и др.) синтезируются мономеры других органических соединений - аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растения обеспечивают себя и всё живое на Земле необходимыми органическими веществами и кислородом.
Сравнительная характеристика фотосинтеза и дыхания эукариот представлена в таблице.

Сравнительная характеристика фотосинтеза и дыхания эукариот

Признак Фотосинтез Дыхание
Уравнение реакции 6СО 2 + 6Н 2 О + энергия света → C 6 H 12 O 6 + 6O 2 C 6 H 12 O 6 + 6O 2 → 6СО 2 + 6Н 2 О + энергия (АТФ)
Исходные вещества Углекислый газ, вода
Продукты реакции Органические вещества, кислород Углекислый газ, вода
Значение в круговороте веществ Синтез органических веществ из неорганических Разложение органических веществ до неорганических
Превращение энергии Превращение энергии света в энергию химических связей органических веществ Превращение энергии химических связей органических веществ в энергию макроэргических связей АТФ
Важнейшие этапы Световая и темновая фаза (включая цикл Кальвина) Неполное окисление (гликолиз) и полное окисление (включая цикл Кребса)
Место протекания процесса Хлоропласты Гиалоплазма (неполное окисление) и митохондрии (полное окисление)

Генетическая информация у всех организмов хранится в виде определённой последовательности нуклеотидов ДНК (или РНК у РНК-содержащих вирусов). Прокариоты содержат генетическую информацию в виде одной молекулы ДНК. В эукариотических клетках генетический материал распределён в нескольких молекулах ДНК, организованных в хромосомы.
ДНК состоит из кодирующих и некодирующих участков. Кодирующие участки кодируют РНК. Некодирующие области ДНК выполняют структурную функцию, позволяя участкам генетического материала упаковываться определённым образом, или регуляторную функцию, участвуя во включении генов, направляющих синтез белка.
Кодирующими участками ДНК являются гены. Ген - участок молекулы ДНК, кодирующей синтез одной мРНК (и соответственно полипептида), рРНК или тРНК.
Участок хромосомы, где расположен ген называется локусом . Совокупность генов клеточного ядра представляет собой генотип , совокупность генов гаплоидного набора хромосом - гено́м , совокупность генов внеядерных ДНК (митохондрий, пластид, цитоплазмы) - плазмон .
Реализация информации, записанной в генах, через синтез белков называется экспрессией (проявлением) генов. Генетическая информация хранится в виде определённой последовательности нуклеотидов ДНК, а реализуется в виде последовательности аминокислот в белке. Посредниками, переносчиками информации выступают РНК. То есть реализация генетической информации происходит следующим образом:
ДНК → РНК → белок.
Этот процесс осуществляется в два этапа:
1) транскрипция;
2) трансляция.

Транскрипция (от лат. transcriptio - переписывание) - синтез РНК с использованием ДНК в качестве матрицы. В результате образуются мРНК, тРНК и рРНК. Процесс транскрипции требует больших затрат энергии в виде АТФ и осуществляется ферментом РНК-полимеразой.

Одновременно транскрибируется не вся молекула ДНК, а лишь отдельные её отрезки. Такой отрезок (транскриптон ) начинается промотором - участком ДНК, куда присоединяется РНК-полимераза и откуда начинается транскрипция, а заканчивается терминатором - участком ДНК, содержащим сигнал окончания транскрипции. Транскриптон - это ген с точки зрения молекулярной биологии.
Транскрипция, как и репликация, основана на способности азотистых оснований нуклеотидов к комплементарному связыванию. На время транскрипции двойная цепь ДНК разрывается, и синтез РНК осуществляется по одной цепи ДНК.

В процессе транскрипции последовательность нуклеотидов ДНК переписывается на синтезирующуюся молекулу мРНК, которая выступает в качестве матрицы в процессе биосинтеза белка.
Гены прокариот состоят только из кодирующих нуклеотидных последовательностей.

Гены эукариот состоят из чередующихся кодирующих (экзонов ) и некодирующих (интронов ) участков.

После транскрипции участки мРНК, соответствующие интронам, удаляются в ходе сплайсинга, являющегося составной частью процессинга.

Процессинг - процесс формирования зрелой мРНК из её предшественника пре-мРНК. Он включает два основных события. 1.Присоединение к концам мРНК коротких последовательностей нуклеотидов, обозначающих место начала и место конца трансляции. Сплайсинг - удаление неинформативных последовательностей мРНК, соответствующих интронам ДНК. В результате сплайсинга молекулярная масса мРНК уменьшается в 10 раз. Трансляция (от лат. translatio - перевод) - синтез полипептидной цепи с использованием мРНК в роли матрицы.

В трансляции участвуют все три типа РНК: мРНК является информационной матрицей; тРНК доставляют аминокислоты и узнают кодоны; рРНК вместе с белками образуют рибосомы, которые удерживают мРНК, тРНК и белок и осуществляют синтез полипептидной цепи.

Этапы трансляции

Этап Характеристика
Инициация Сборка комплекса, участвующего в синтезе полипептидной цепи. Малая субчастица рибосомы соединяется с инициаторной мет-трнк , а затем с мрн к, после чего происходит образование целой рибосомы, состоящей из малой и большой субчастиц.
Элонгация Удлинение полипептидной цепи. Рибосома перемещается вдоль мрнк , что сопровождается многократным повторением цикла присоединения очередной аминокислоты к растущей полипептидной цепи.
Терминация Завершение синтеза полипептидной молекулы. Рибосома достигает одного из трёх стоп-кодонов мрнк , а так как не существует трнк с антикодонами, комплементарными стоп-кодонам, синтез полипептидной цепи прекращается. Она высвобождается и отделяется от рибосомы. Рибосомные субчастицы диссоциируют, отделяются от мрнк и могут принять участие в синтезе следующей полипептидной цепи.

Реакции матричного синтеза. К реакциям матричного синтеза относятся

  • самоудвоение ДНК (репликация);
  • образование мРНК, тРНК и рРНК на молекуле ДНК (транскрипция);
  • биосинтез белка на мРНК (трансляция).

Все эти реакции объединяет то, что молекула ДНК в одном случае или молекула мРНК в другом выступают в роли матрицы, на которой происходит образование одинаковых молекул. Реакции матричного синтеза являются основой способности живых организмов к воспроизведению себе подобных.
Регуляция экспрессии генов . Тело многоклеточного организма построено из разнообразных клеточных типов. Они отличаются структурой и функциями, то есть дифференцированы. Различия проявляются в том, что помимо белков, необходимых любой клетке организма, клетки каждого типа синтезируют ещё и специализированные белки: в эпидермисе образуется кератин, в эритроцитах - гемоглобин и т. д. Клеточная дифференцировка обусловлена изменением набора экспрессируемых генов и не сопровождается какими-либо необратимыми изменениями в структуре самих последовательностей ДНК.

Понравилась статья? Поделитесь ей
Наверх